



































































The flow control method can effectively promote the mixing of the injected fluid with the surrounding fluid, and it has important applications in various fields, such as energy, chemical industry, aerospace and precision manufacturing, etc. Therefore, it has received widespread attention from scholars worldwide. In order to better understand the current situation and future development trend of oscillatory jets, this paper is the first to comprehensively summarize and classify the seven excitation methods of oscillatory jets, such as microjet, mechanical, feedback, blunt V-nozzle, impact V-plate, cavity self-excited flapping, film self-excited flapping, etc. A comparison of the principles of the different excitation methods and the characteristics of the resulting oscillating jets is conducted, pointing out the problems of the oscillating jet technology itself and the limitations of the industrial application of related technologies, and giving forecasts and suggestions for the development of the oscillating jet technology.

In this paper, the effect of flow around a wall-mounted 2D square cylinder on WSS (Wall Shear Stress) in a TBL (Turbulent Boundary Layer) is studied using TR–PIV and hot wires. The Reynolds number, defined by the cylinder width and the free stream velocity, is fixed at 1.1 × 104. There exist two types of large-scale flow structures, i.e., vortex I which denotes those moving towards the wall, and vortex II which denotes those moving downstream. The flow structures have significant effects on the flow and WSS: increasing the streamwise velocity gradient that results in a sharply increased WSS; reducing the streamwise velocity gradient that results in a sharply decreased WSS; and changing the WSS direction. The study is helpful to understand the physics of surface erosion, pollutant accumulation, flow energy loss, etc.

When a helicopter flies forward at high speed with heavy load, the blade pitch changes greatly and dynamic stall is prone to occur. The lower rotational speed of the inner section of the trailing blade leads to the formation of a reverse flow zone under the superposition of the incoming flow, resulting in a reduction in the aerodynamic efficiency of the blade. The problems of blade fatigue failure and lift reduction hinder the further improvement of helicopter performance. Flow control methods have great potential in improving the aerodynamic characte-ristics of airfoils, and are effective ways to improve the rotor aerodynamic efficiency and ensure helicopter safety and stability. In this paper, the formation mechanism and unsteady flow characteristics of the reverse flow zone and dynamic stall are firstly described, and the research results of two special aerodynamic phenomena are summarized. On this basis, a comparative analysis of flow control methods such as variable airfoil configuration, surface mechanical devices, air-blowing control, plasma actuator, synthetic jet actuator, and trailing edge flap on the mechanism of rotor dynamic stall and reverse flow control is conducted, and the effects of control parameters and flow field parameters on control effectiveness are summarized. Finally, the remain-ing problems and solutions in the application of various flow control methods are prospected.

The present work uses the stereoscopic particle image velocimetry and calibration-free dual hot-film wall shear stress measurement sensor to measure the flowfield and friction at downstream of the one array of forwards wedge Micro Vortex Generator (MVG) in the turbulent boundary layer at moderate Reynolds number. The result of flowfield measurement shows that MVG produces the streamwise velocity defect regions and streamwise vortices pairs in downstream time-averaged flowfield, which causes the second outer-peak in the spanwise pre-multiplied energy spectra. The result of proper orthogonal decomposition shows that the contribution of energy of structures induced by MVG is equivalent to the that of large-scale structures and very large-scale structures in the smooth-wall turbulent boundary layer, which also significantly affects the spatial distribution of the near-wall structures. The friction measurement experiment shows that MVG array with higher height and closer spanwise arrangement has higher friction drag reduction. The drag reduction effect of MVG lasts downstream to 80 times of its own characteristic height.

For the reliable sensing requirements of closed-loop active flow control, a real-time noise reduction method based on the artificial neural network was proposed for solving the plasma actuation electromagnetic interference on flow field signals. Taking the dynamic pressure sensor installed on the cylinder surface as the experimental subject, the “dense peak” type noise signals of alternating current dielectric barrier discharge (AC–DBD) and the “sparse spike” type noise signals of nanosecond pulsed dielectric barrier discharge (NS–DBD) were collected respectively. Artificial synthetic noise signals were used for supervised learning, and the generalization of the artificial neural network model was tested and verified. The results show that this method can effectively suppress the influence of electromagnetic interference caused by plasma actuation and restore the real pressure signal. It has better denoising performance on the AC–DBD “dense peak” type noise signal. The denoised signal is smoother and better fitted with the real one. This model is also applied to the real flow field pressure measurement, and the accuracy of the denoising network prediction is further verified by comparing the mean value of the denoised signal and the real signal.

We investigated the control effectiveness and mechanism of the control of the circular cylinder flow field using bionic nylon wires inspired by bird feathers by wind tunnel tests. In this experiment, at a Reynolds number of 2.67 × 104, the bionic nylon filament was arranged at the front station of the cylinder and the length ratio L/D between nylon wire length and cylinder diameter was used as the characteristic parameter. The surface pressure measurement system was used to obtain the pressure coefficients around the cylinder to analyze the aerodynamic forces acting on the cylinder. The two-dimensional flow field information of the cylinder was obtained by a high-speed Particle Image Velocimetry (PIV) measurement system, and the Proper Orthogonal Decomposition (POD) was used to obtain the instantaneous and time-averaged characteristics of the flow field. The results show that at L/D < 0.6, the control effectiveness of nylon wires is limited because the nylon-induced vortex structures cannot reach the wake field. At L/D > 1.0, the nylon wires can significantly reduce the turbulent kinetic energy and Reynolds stress of the cylindrical wake field and suppress the lift and drag coefficient distributions around the circular cylinder. And at high values, nylon wires can inhibit the interaction between shear layers and thus change the von Kármán vortex shedding pattern of the cylinder.

When the aircraft is in the process of taking off, landing and flexible maneuvering, flow separation occurs above the flap and rudder which is caused by the large deflection angle. It reduces the performance of the flap and rudder, or even makes them ineffective. In order to solve this problem, a performance enhancement technology of flap based on array dual synthetic jets was proposed. Aiming at seamless flap, the influence of different dual synthetic jets driving parameters on the lift force and flap performance was investigated. The investigation results show that the dual synthetic jets can generate periodic vortex structures above the flap surface, which enhanced the momentum exchange between the low-velocity air in the boundary layer and the main flow. These vortex structures can also strengthen the ability of the boundary layer to resist the adverse pressure gradient. The array dual synthetic jets at the flap can effectively increase the lift force and enhance the flap performance. The flap performance enhancement is more effective when the dimensionless driving frequency is 3.89 and the momentum coefficient is 3.01 × 10–3. The integrated model of the array dual synthetic jets actuator combined with the wing was designed and fabricated, and the flight test was carried out. The rolling angular velocity could achieve 15.69 (°)/s, which verifies the feasibility and effectiveness of performance enhancement of flap based on dual synthetic jets.
粒子图像测速技术目前已经发展成为实验流体力学领域应用最广泛的非接触激光测试方法之一,为认知复杂流动机理提供直观的流场信息.本文基于超声速流场PIV技术研究实践,针对示踪粒子布撒器设计、粒子松弛特性模型构建、激波流场测试分析、超声速平板湍流边界层结构分析等方面具体问题的研究和认识,从理论、定量化的角度深入分析了应用于超声速流场PIV技术现阶段依然存在的问题.从应用于超声速流场PIV技术的原理出发,针对高速复杂流场的PIV测试现状,总结了应用于超声速流场PIV技术发展过程中的光学部件、示踪粒子及布撒系统所遇到的一系列挑战,以及国内外利用PIV技术在高速复杂流场研究中所取得的成就,针对PIV技术能否适用于高超声速流场的测量做了系统化地探索.并根据实践经验提出了应用于超声速流场PIV技术未来的发展方向:通用的精确的PIV方法不存在,必须从具体研究的流动机理角度改造相应的PIV测试手段.
通过刚性模型测压风洞试验,研究了圆柱的气动阻力、气动升力系数和风压系数随雷诺数的变化规律,从流场分布的角度分析了气动力变化的原因,并研究了雷诺数影响下的流场在圆柱轴向的相关性。结果表明:在亚临界雷诺数区域,在时间平均上流场沿模型两侧呈对称分布,雷诺数对平均阻力系数和流场影响较小,平均升力系数基本为零。在临界雷诺数区域,随着特定区域大负压区的出现,流场不再对称,出现不容忽视的平均升力和脉动升力。在超临界雷诺数区域,随着对称侧大负压区的出现,流场恢复对称状态,平均升力基本消失。雷诺数对流场的轴向相关性有显著的影响。在雷诺数较低时(亚临界区域),卡门涡在轴向上的尺度相对较大,而随着雷诺数的提高,该尺度逐渐减小,各断面流场的相关性降低。
高速列车进入隧道时,会产生压缩波,压缩波沿隧道内传播至隧道端口后形成向外辐射的微气压波。本文介绍了采用动模型实验平台在200~350km/h速度范围内对60m双向隧道模型的隧道壁面压力波和出口微气压波开展的实验研究。首先分析了实验数据的有效性;其次给出了初始压缩波最大值随时间的衰减变化规律和微气压幅值随实验速度的变化特性;最后研究了流线形头型长度对微气压波幅值的影响。实验结果表明:在实验速度范围内,隧道压力波和出口微气压波无量纲值保持一致,但隧道出口微气压波与流线型头型长度只能定性描述,定量关系难以确定。
地面风洞试验和飞行试验是研究高超声速飞行器气动加热的主要手段。针对临近空间复杂气动外形高超声速飞行器气动热环境研究的需要,分析探讨了国内气动热试验及测量技术的发展情况。分析了临近空间高超声速飞行器外形特征以及飞行剖面、边界层转捩和气动热环境特性等,进而分析了气动热环境风洞试验模拟理论,介绍了适用于气动热研究的风洞试验设备及其模拟能力,重点讨论了适用于不同类型风洞的热流测量技术发展近况、存在的问题和发展趋势;在以长时间、高热流、高壁温为主要特征的高超声速飞行试验中,无法应用风洞环境下的热流测量技术,因而介绍了目前飞行试验中采用的气动热测量技术,讨论了根据结构温度反辨识表面热流存在的问题,以及热流传感器表面的"冷点效应"、表面催化特性等因素对飞行试验气动热测量的影响,提出了后续工作中应重点研究和解决的临近空间飞行器气动热环境测量技术问题。
采用粒子成像速度场仪(PIV)和数值模拟(CFD)对Taylor-Couette 流场进行测量,获得各转速下涡流场信息。将同等条件下PIV测量结果与数值模拟结果相联系,对比分析不同旋转雷诺数范围内涡流场中不同径线和中轴线上各向速度的变化特征。结果表明,各种特征存在一定的转速分段范围:在2~7r/min(Re为100~350)时,各向速度特征为层流涡特性,在7~40r/min(Re为350~2000)时,各向速度特征为波状涡特性,在40~60r/min (Re为2000~3000)时,各向速度特征为调制波状涡特性,当转速大于60r/min(Re大于3000)时,各向速度特征为湍流涡特性。根据不同角度获得的各向速度特征对应的内筒转速、旋转雷诺数与流场涡形态的关系,明确分析出特定几何条件下,泰勒涡发生形态转变的旋转雷诺数,以便于深入探究泰勒涡流场的特性,定量分析涡运动形态特征。
在节段模型风洞试验中,两端设置端板可以有效减小端部效应对风压分布的影响,从而保证气流在模型周围的二维流动,其中端板尺寸是影响端板效果的主要参数。为了明确不同尺寸端板对矩形断面气动特性的影响,以桥梁节段模型中最常见的3种宽高比(B/H分别为1、5和10)的二维矩形断面为研究对象,通过刚性模型测压试验,研究了端板尺寸对各模型的气动力、风压分布和斯托罗哈数St的影响。研究结果表明:模型的端部效应不仅仅对端部附近的风压有影响,对中间位置处风压的影响也不容忽视,设置端板是获得准确试验结果的重要保证;随着断面宽高比(B/H)逐渐增大,端部效应影响的程度和范围逐渐减小;随着端板尺寸的增大,模型背风面风压绝对值逐渐增大并趋向一稳定值;抑制端部效应的最小端板尺寸与结构的风迎角有关,风迎角增大,所需的端板也相应增大;有无端板对斯托罗哈数St也有明显影响。
高超声速边界层感受性是边界层转捩预测与控制的关键环节,其对高超声速飞行器研究至关重要。目前关于高超声速边界层感受性的实验研究仍然十分匮乏,为了更好地理解高超声速边界层感受性过程并指导该领域的实验研究,文章梳理了近20年来国际上高超声速边界层感受性问题的研究内容,包括对自由流扰动和壁面扰动的感受性,并主要介绍了Fedorov的前缘感受性理论和模态转化机制。最后总结了自由流扰动中感受性的不同发展路径。
火箭冲压组合发动机包含多个工作模态,不同模态灵活组合的优势使其具有宽速域和广空域的工作特点,兼具加速和巡航的优点.火箭冲压组合发动机燃烧室中存在着亚声速、跨声速和超声速共存的流动结构,具有流动速度高、混合时间短、反应强度大、燃烧空间受限和波系结构复杂等特点.围绕火箭射流的强剪切性、燃烧模式的多样性和燃烧过程的动态性,分析了火箭冲压组合发动机的流动与燃烧特征,总结了面向发动机的高速湍流燃烧研究进展,研究了火箭冲压组合发动机中超声速反应混合层的生长特性、燃烧模式与空间释热分布和动态燃烧特性等问题.通过对碳氢燃料详细化学动力学机理的简化、校验,获得了分别适合于工程计算和细致燃烧机理研究的总包反应与框架机理.从火箭射流主导的反应混合层生长模型,宽范围、变来流工作中流动燃烧过程的不确定性和碳氢燃料动力学的简化与加速算法研究出发,提出了火箭冲压组合发动机基础研究中需要突破的问题,为认识发动机中多尺度燃烧机理、优化多模态燃烧组织提供参考.
投弃式海流剖面仪(Expendable Current Profiler,XCP)周围流场是典型的旋转圆柱绕流.探头周围流场对探头的运动状态起决定性作用,这直接关系到探头的测量性能,因此有必要对旋转圆柱周围流场进行实验研究.实验在循环水槽中进行,通过PIV对雷诺数保持不变(Re=1000)、不同圆柱旋转速度比(α=0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5和5.0)的圆柱下游尾流场进行研究.通过选取不同旋转速度比的任一时刻的瞬态流场,来分析旋转对圆柱尾流结构的影响.为了获得流场的频率信息,对所获得流场信息进行能谱分析来获取涡旋的脱落频率,并进一步使用正交模态分解对流场进行分析,给出了流场主要拟序结构及其能量与转速比的变化趋势.发现圆柱旋转改变圆柱尾流结构,使尾迹尺度变小.在旋转速度比0≤α≤2.0时,存在明显的周期性涡旋脱落,并且涡旋脱落的频率有逐渐升高的趋势;而且当转速比2.0<α≤5.0时尾迹流场的周期性减弱,涡旋脱落变得不明显,流场表现出低频、剪切层的区域特征.随着转速变大,涡旋尺度变小.在较高旋转速度比时,流场中能量被重新分布.
采用时间解析PIV(采样频率为1000Hz)在0.55m×0.4m声学风洞中测量了直径D=20mm圆柱后方7.5倍直径、圆柱两侧各3.3倍直径所围成范围内的绕流尾迹在雷诺数Re=2.74×104下的非定常流场。针对PIV获得的速度场数据,进行流场和频谱特性分析,探讨了圆柱绕流尾迹中的平均流场和脉动流场特性,以及旋涡脱落的频率特性。提出了基于速度场之间相关性的相位平均分析方法,系统分析了圆柱上下两侧旋涡交替生成、脱落、发展并耗散的完整演化过程。结果表明:在圆柱后方存在一个低速回流区,其中心0.8D的位置附近是流动结构变化最剧烈的区域;圆柱后方1.9D位置附近是上/下两侧脱落旋涡交汇、耦合的区域,湍流脉动最强;圆柱绕流尾迹中,旋涡脱落频率对应的斯特劳哈尔数稳定在0.2左右;基于速度场之间相关性的相位平均分析方法简单有效,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。