














































After several generations of technological innovation and development, China's rail transit has made remarkable achievements. The adhesion of the wheel rail system limits the further high-speed development of rail transit, and the application of the maglev technology in rail transit arises at the historic moment. During the 13th Five-Year Plan period, China began to develop the high-speed maglev transportation system with a speed of 600 km/h. The operational speed of the high-speed maglev train is 600 km/h and the Mach number reaches 0.49, and the aerodynamic performance of the train deteriorates sharply. Due to the change of the operational environment (train-rail gap, throttling on both sides) of the high-speed maglev train, the aerodynamic characteristics of the high-speed maglev train are different from that of the high-speed wheel-rail train. The aerodynamic problem has become one of the key issues in the design and development of the high-speed maglev train. In the present paper, the technical challenges faced by the aerodynamic design of the high-speed maglev train are discussed, and the solutions of the aerodynamic design of the high-speed maglev train are proposed. Then the aerodynamic design schemes of the China’s 600 km/h high-speed maglev train are introduced, and the future research fields of aerodynamics of the high-speed maglev train are prospected.

Based on the SST

Adding the aeronautic wing to the high-speed train equivalently reduces its weight through the lift force provided by the wing. Hopefully, the energy consumption of the high-speed train can be reduced. This provides a new concept for the high speed train design. The aerodynamic characteristics of the wing directly affect the weight reduction effects. Therefore, it is important to analyze the aerodynamic characteristics of the wing under different conditions for the design of the train lift wing. The k–ε model was used in this study for numerical simulation. Firstly, the influence of the connection rod between the wing and the train roof on the aerodynamic characteristics of the lift wing was analyzed. On this basis, the effects of design parameters such as the wing-roof height, the incoming flow velocity and the angle of attack on the aerodynamic characteristics of the wing were studied. The results shows that: the influence of the connection rod on the lift and drag of the wing is less than 3.7%. Due to the high-speed airflow induced by the leading edge of the train roof model, the air velocity impacting on the lift wing decreases with the increase of the flying height of the lift wing, and the lift force tends to decrease. Within 3 times of the chord length height, the maximum lift difference of different lift wings does will not exceed 3%. When the velocity of the incoming flow is up to 90 m/s and larger, the lift coefficient and the drag coefficient of the lift wing were close to near 1.62 and 0.61, respectively. As the angle of attack varies within 0° to 22°, the lift coefficients of the wing increase continuously. However, the lift coefficients decrease when the attack angle is above 22°.

When a high-speed train enters a tunnel, an initial compression wave occurs and radiates to the outside of the tunnel to form a micro pressure wave when it propagates longitudinally along the tunnel to the exit. An experimental device for generating the initial compression wave by the instantaneous release of high-pressure air was built, and the experimental research on the compression wave generated by it was carried out. Firstly, the composition of the experimental device was introduced, and the pressure time history curve and formation mechanism in the tunnel were analyzed. Secondly, the influence of the parameters of the experimental device on the initial compression wave was drawn out. The subsequent attenuation process of the compression wave was studied at last. The experimental results show that the pressure fluctuation in the tunnel is mainly affected by the reflected wave at the tunnel portal. The amplitude, gradient and positive peak value of the initial compression wave can be adjusted by changing the relevant parameters of the experimental device. The attenuation period of the compression wave is the same under different initial pressures of the high-pressure chamber, but the larger the initial amplitude is, the faster the pressure decays in the same time period.

The different pressure fluctuation caused by a high-speed train passing through tunnels of various length can cause different degrees of pressure comfort problems for passengers. The one-dimensional compressible unsteady non-isentropic flow model characteristic line method and the time constant method pressure tightness index model were used to study the pressure wave outside the train and the pressure change characteristics inside the train under two pressure tightness indexes when a single high-speed maglev train passes through the tunnel. The concept of the critical tunnel length of the high-speed maglev single line based on the pressure comfort standard was improved, and the influence of the train speed and train dynamic pressure tightness index on the critical tunnel length was studied. It is found that: under the condition of critical tunnel length based on the maximum negative pressure value of the external pressure, the maximum negative pressure value of the internal pressure is smaller. The maximum value of the maximum pressure change in each 1, 3, 10 and 60 s in the train increases first and then decreases with the increase of the tunnel length, and there is the critical tunnel length under pressure comfort constraints. The critical tunnel length at different train speeds is different. Except for per 10 s limit conditions, the critical tunnel length under different train dynamic pressure tightness indexes is approximately the same. When a 600 km/h single-train maglev train with a dynamic pressure tightness index of 83 s passes through a 100 m2 tunnel, the critical tunnel length based on the UIC660 comfort standard is 10–12 km. The research results of this paper have good reference value for the study of tunnel clearance area and train pressure tightness based on comfort standard, and for further improvement of the theoretical system of the critical tunnel length of the rail transit based on the tunnel pressure wave effect.

When the high-speed maglev train enters a tunnel, a compression wave generated by it will induce the air flow at the exit of the tunnel to form an adjoint velocity. The three-dimensional, compressible, unsteady calculation method is used to simulate the process of the high-speed maglev train passing through a tunnel with different blocking ratios under different speeds. The features of the slipstream around the tunnel exit induced by the compression wave are analyzed, and the influence of the train speed and blocking ratio on the slipstream is ascertained. The results show that at the tunnel exit, the trend and the peak speeds of the slipstream induced by the compression wave have no apparent change in the direction of the train’s movement; the peak wind speed of the measuring point outside the tunnel exit gradually decreases in the longitudinal range of 25 m, and basically remains unchanged in the transverse range of 5 m. With the vehicle speed and blocking ratio increasing, the peak wind speeds inside and outside the outlet are raised obviously. When the train speed is 600 km/h and the blocking ratio is 17.04%, the maximum wind speed at 5 m outside the tunnel is up to 56 m/s. This conclusion is helpful to strengthen people's understanding about the harm of the slipstream induced by a train passing through a tunnel, and to provide references for protection against the slipstream in the railway tunnel and the safe operation of maglev train in the future.
粒子图像测速技术目前已经发展成为实验流体力学领域应用最广泛的非接触激光测试方法之一,为认知复杂流动机理提供直观的流场信息.本文基于超声速流场PIV技术研究实践,针对示踪粒子布撒器设计、粒子松弛特性模型构建、激波流场测试分析、超声速平板湍流边界层结构分析等方面具体问题的研究和认识,从理论、定量化的角度深入分析了应用于超声速流场PIV技术现阶段依然存在的问题.从应用于超声速流场PIV技术的原理出发,针对高速复杂流场的PIV测试现状,总结了应用于超声速流场PIV技术发展过程中的光学部件、示踪粒子及布撒系统所遇到的一系列挑战,以及国内外利用PIV技术在高速复杂流场研究中所取得的成就,针对PIV技术能否适用于高超声速流场的测量做了系统化地探索.并根据实践经验提出了应用于超声速流场PIV技术未来的发展方向:通用的精确的PIV方法不存在,必须从具体研究的流动机理角度改造相应的PIV测试手段.
通过刚性模型测压风洞试验,研究了圆柱的气动阻力、气动升力系数和风压系数随雷诺数的变化规律,从流场分布的角度分析了气动力变化的原因,并研究了雷诺数影响下的流场在圆柱轴向的相关性。结果表明:在亚临界雷诺数区域,在时间平均上流场沿模型两侧呈对称分布,雷诺数对平均阻力系数和流场影响较小,平均升力系数基本为零。在临界雷诺数区域,随着特定区域大负压区的出现,流场不再对称,出现不容忽视的平均升力和脉动升力。在超临界雷诺数区域,随着对称侧大负压区的出现,流场恢复对称状态,平均升力基本消失。雷诺数对流场的轴向相关性有显著的影响。在雷诺数较低时(亚临界区域),卡门涡在轴向上的尺度相对较大,而随着雷诺数的提高,该尺度逐渐减小,各断面流场的相关性降低。
火箭冲压组合发动机包含多个工作模态,不同模态灵活组合的优势使其具有宽速域和广空域的工作特点,兼具加速和巡航的优点.火箭冲压组合发动机燃烧室中存在着亚声速、跨声速和超声速共存的流动结构,具有流动速度高、混合时间短、反应强度大、燃烧空间受限和波系结构复杂等特点.围绕火箭射流的强剪切性、燃烧模式的多样性和燃烧过程的动态性,分析了火箭冲压组合发动机的流动与燃烧特征,总结了面向发动机的高速湍流燃烧研究进展,研究了火箭冲压组合发动机中超声速反应混合层的生长特性、燃烧模式与空间释热分布和动态燃烧特性等问题.通过对碳氢燃料详细化学动力学机理的简化、校验,获得了分别适合于工程计算和细致燃烧机理研究的总包反应与框架机理.从火箭射流主导的反应混合层生长模型,宽范围、变来流工作中流动燃烧过程的不确定性和碳氢燃料动力学的简化与加速算法研究出发,提出了火箭冲压组合发动机基础研究中需要突破的问题,为认识发动机中多尺度燃烧机理、优化多模态燃烧组织提供参考.
高超声速边界层感受性是边界层转捩预测与控制的关键环节,其对高超声速飞行器研究至关重要。目前关于高超声速边界层感受性的实验研究仍然十分匮乏,为了更好地理解高超声速边界层感受性过程并指导该领域的实验研究,文章梳理了近20年来国际上高超声速边界层感受性问题的研究内容,包括对自由流扰动和壁面扰动的感受性,并主要介绍了Fedorov的前缘感受性理论和模态转化机制。最后总结了自由流扰动中感受性的不同发展路径。
投弃式海流剖面仪(Expendable Current Profiler,XCP)周围流场是典型的旋转圆柱绕流.探头周围流场对探头的运动状态起决定性作用,这直接关系到探头的测量性能,因此有必要对旋转圆柱周围流场进行实验研究.实验在循环水槽中进行,通过PIV对雷诺数保持不变(Re=1000)、不同圆柱旋转速度比(α=0、0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5和5.0)的圆柱下游尾流场进行研究.通过选取不同旋转速度比的任一时刻的瞬态流场,来分析旋转对圆柱尾流结构的影响.为了获得流场的频率信息,对所获得流场信息进行能谱分析来获取涡旋的脱落频率,并进一步使用正交模态分解对流场进行分析,给出了流场主要拟序结构及其能量与转速比的变化趋势.发现圆柱旋转改变圆柱尾流结构,使尾迹尺度变小.在旋转速度比0≤α≤2.0时,存在明显的周期性涡旋脱落,并且涡旋脱落的频率有逐渐升高的趋势;而且当转速比2.0<α≤5.0时尾迹流场的周期性减弱,涡旋脱落变得不明显,流场表现出低频、剪切层的区域特征.随着转速变大,涡旋尺度变小.在较高旋转速度比时,流场中能量被重新分布.
采用粒子成像速度场仪(PIV)和数值模拟(CFD)对Taylor-Couette 流场进行测量,获得各转速下涡流场信息。将同等条件下PIV测量结果与数值模拟结果相联系,对比分析不同旋转雷诺数范围内涡流场中不同径线和中轴线上各向速度的变化特征。结果表明,各种特征存在一定的转速分段范围:在2~7r/min(Re为100~350)时,各向速度特征为层流涡特性,在7~40r/min(Re为350~2000)时,各向速度特征为波状涡特性,在40~60r/min (Re为2000~3000)时,各向速度特征为调制波状涡特性,当转速大于60r/min(Re大于3000)时,各向速度特征为湍流涡特性。根据不同角度获得的各向速度特征对应的内筒转速、旋转雷诺数与流场涡形态的关系,明确分析出特定几何条件下,泰勒涡发生形态转变的旋转雷诺数,以便于深入探究泰勒涡流场的特性,定量分析涡运动形态特征。
采用时间解析PIV(采样频率为1000Hz)在0.55m×0.4m声学风洞中测量了直径D=20mm圆柱后方7.5倍直径、圆柱两侧各3.3倍直径所围成范围内的绕流尾迹在雷诺数Re=2.74×104下的非定常流场。针对PIV获得的速度场数据,进行流场和频谱特性分析,探讨了圆柱绕流尾迹中的平均流场和脉动流场特性,以及旋涡脱落的频率特性。提出了基于速度场之间相关性的相位平均分析方法,系统分析了圆柱上下两侧旋涡交替生成、脱落、发展并耗散的完整演化过程。结果表明:在圆柱后方存在一个低速回流区,其中心0.8D的位置附近是流动结构变化最剧烈的区域;圆柱后方1.9D位置附近是上/下两侧脱落旋涡交汇、耦合的区域,湍流脉动最强;圆柱绕流尾迹中,旋涡脱落频率对应的斯特劳哈尔数稳定在0.2左右;基于速度场之间相关性的相位平均分析方法简单有效,可以准确地识别绕流尾迹中旋涡交替脱落和发展的时空演化过程,在非定常流场测量方面具有普遍推广意义。
OH和CH2O平面激光诱导荧光(PLIF)同时成像技术在研究火焰结构和燃烧反应中间产物二维分布等方面能够发挥重要作用。OH的分布被用来表征火焰反应区的结构,而CH2O的分布则被用来显示火焰预热区的分布。利用OH和CH2O PLIF同时成像技术研究了甲烷/空气部分预混火焰的结构。从实验系统、光路调节、时序同步、OH A-X(1,0)扫谱、数据采集和处理等方面讨论了PLIF同时成像技术的实验方法。实验结果表明,OH和CH2O PLIF同时成像能够分别呈现甲烷/空气部分预混火焰反应区和预热区不同形状的瞬时结构;由于反应区在相邻位置的结合,在火焰中能够局部生成新的分裂的预热区。
高速列车进入隧道时,会产生压缩波,压缩波沿隧道内传播至隧道端口后形成向外辐射的微气压波。本文介绍了采用动模型实验平台在200~350km/h速度范围内对60m双向隧道模型的隧道壁面压力波和出口微气压波开展的实验研究。首先分析了实验数据的有效性;其次给出了初始压缩波最大值随时间的衰减变化规律和微气压幅值随实验速度的变化特性;最后研究了流线形头型长度对微气压波幅值的影响。实验结果表明:在实验速度范围内,隧道压力波和出口微气压波无量纲值保持一致,但隧道出口微气压波与流线型头型长度只能定性描述,定量关系难以确定。
在节段模型风洞试验中,两端设置端板可以有效减小端部效应对风压分布的影响,从而保证气流在模型周围的二维流动,其中端板尺寸是影响端板效果的主要参数。为了明确不同尺寸端板对矩形断面气动特性的影响,以桥梁节段模型中最常见的3种宽高比(B/H分别为1、5和10)的二维矩形断面为研究对象,通过刚性模型测压试验,研究了端板尺寸对各模型的气动力、风压分布和斯托罗哈数St的影响。研究结果表明:模型的端部效应不仅仅对端部附近的风压有影响,对中间位置处风压的影响也不容忽视,设置端板是获得准确试验结果的重要保证;随着断面宽高比(B/H)逐渐增大,端部效应影响的程度和范围逐渐减小;随着端板尺寸的增大,模型背风面风压绝对值逐渐增大并趋向一稳定值;抑制端部效应的最小端板尺寸与结构的风迎角有关,风迎角增大,所需的端板也相应增大;有无端板对斯托罗哈数St也有明显影响。