Citation: | DENG H D, XIA T Y, DONG H, et al. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230032. |
[1] |
McMICHAEL C M S F, JAMES M. Micro air vehicles—toward a new dimension in flight[R]. US DAPPA/TTO Report, 1997.
|
[2] |
SHYY W, LIAN Y, TANG J, et al. Aerodynamics of low Reynolds number flyers[M]. Cambridge: Cambridge University Press, 2008.
|
[3] |
MUELLER T J, DeLAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35: 89–111. doi: 10.1146/annurev.fluid.35.101101.161102
|
[4] |
FENG L, WEN S. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mechanics, 2007, 37(2): 257–268.
|
[5] |
BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery, 2010, 132(2): 021004. doi: 10.1115/1.3066315
|
[6] |
SERDAR GENÇ M, KOCA K, AÇIKEL H H. Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element[J]. Energy, 2019, 176: 320–334. doi: 10.1016/j.energy.2019.03.179
|
[7] |
ZHOU Y, WANG Z J. Effect of surface roughness on laminar separation bubble over a wing at a low-Reynolds number[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 736. doi: 10.2514/6.2011-736
|
[8] |
JABBARI H, ALI E, DJAVARESHKIAN M H. Acoustic and phase portrait analysis of leading-edge roughness element on laminar separation bubbles at low Reynolds number flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(9): 1782–1798. doi: 10.1177/09544100211044316
|
[9] |
GROSS A, FASEL H F. Numerical investigation of passive separation control for an airfoil at low-Reynolds-number conditions[J]. AIAA Journal, 2013, 51(7): 1553–1565. doi: 10.2514/1.J051553
|
[10] |
JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]//Proc of the 33rd AIAA Applied Aerodynamics Conference. 2015: 3384. doi: 10.2514/6.2015-3384
|
[11] |
RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. doi: 10.2172/205563
|
[12] |
CHAKROUN W, AL-MESRI I, AL-FAHAD S. Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil[J]. Wind Engineering, 2004, 28(5): 547–564. doi: 10.1260/0309524043028136
|
[13] |
ZHANG Y, IGARASHI T, HU H. Experimental investiga-tions on the performance degradation of a low-Reynolds-number airfoil with distributed leading edge roughness[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 1102. doi: 10.2514/6.2011-1102
|
[14] |
LIU T S, SULLIVAN J P. Luminescent oil-film skin-friction meter[J]. AIAA Journal, 1998, 36(8): 1460–1465. doi: 10.2514/2.538
|
[15] |
LIU T S. Global skin friction measurements and interpre-tation[J]. Progress in Aerospace Sciences, 2019, 111: 100584. doi: 10.1016/j.paerosci.2019.100584
|
[16] |
LEE T J, LEE C I, NONOMURA T, et al. Unsteady skin-friction field estimation based on global luminescent oil-film image analysis[J]. Journal of Visualization, 2020, 23(5): 763–772. doi: 10.1007/s12650-020-00661-y
|
[17] |
李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015.
|
[18] |
SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers[C]//Proc of the 34th Aerospace Sciences Meeting and Exhibition. 1996: 62. doi: 10.2514/6.1996-62
|
[19] |
白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学 (物理学 力学 天文学), 2015, 45(2): 41–52.
BAI P, LI F, ZHAN H L, et al. Study on nonlinear unsteady laminar separation phenomenon of airfoil with low Re number and small angle of attack[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2): 41–52.
|
[20] |
YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Reynolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632: 245–271. doi: 10.1017/s0022112009007058
|
[21] |
LIU C Q, YAN Y H, LU P. Physics of turbulence generation and sustenance in a boundary layer[J]. Computers & Fluids, 2014, 102: 353–384. doi: 10.1016/j.compfluid.2014.06.032
|
1. |
韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
![]() | |
2. |
白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
![]() | |
3. |
王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
![]() | |
4. |
于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
![]() | |
5. |
杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
![]() | |
6. |
刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
![]() | |
7. |
刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
![]() | |
8. |
杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
![]() | |
9. |
韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
![]() | |
10. |
张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
![]() | |
11. |
白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
![]() | |
12. |
杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
![]() | |
13. |
沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
![]() | |
14. |
温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 .
![]() | |
15. |
任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
![]() | |
16. |
李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
![]() | |
17. |
马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 .
![]() | |
31. |
杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .
![]() |