DENG H D, XIA T Y, DONG H, et al. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230032.
Citation: DENG H D, XIA T Y, DONG H, et al. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230032.

Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil

More Information
  • Received Date: March 12, 2023
  • Revised Date: May 10, 2023
  • Accepted Date: May 14, 2023
  • Available Online: June 01, 2023
  • In order to explore the influence of rough surfaces on aerodynamic characteristics and the flow field of the low Reynolds number airfoil and to deeply understand the action mechanism of rough surfaces, the SD8020 airfoil was used for experimental research (Re = 4 × 104). The aerodynamic force of the airfoil was measured in the experiment, and the flow field around the airfoil was observed in detail by using luminescent oil-film, smoke wire flow visualization and hot wire technology. The results show that the lift coefficient of the smooth airfoil has nonlinear characteristics in the range of α = 0°~3°, and the abrupt change of the laminar flow separation bubble structure is the main reason for the nonlinear characteristics of the lift coefficient of the airfoil at low Reynolds number. Too small leading edge roughness (Sa+ = 0.00025) does not have significant influence on the flow field, but appropriate leading edge roughness (Sa+ = 0.0051, 0.013) can delay the separation of boundary layer, accelerate the reattachment of shear layer, and reduce or even eliminate laminar separation bubbles. So it can significantly reduce aerodynamic drag and increase the lift-drag ratio. The lift-drag ratio of the smooth airfoil is increased by 35.7% and 41.4%, respectively. When Sa + =0.013, the nonlinear characteristics of the lift coefficient growth is weakened at a small attack angle and the lift coefficient can increase significantly (e. g. the lift coefficient increases by 219.5% when α=2°). The roughness of the leading edge accelerates the growth of the disturbance (manifested as the growth of high-frequency velocity pulsation and T–S wave), rolls the vorticity of the wall into the flow field faster, and forms the vortex structure earlier. The vortex structure can strengthen the normal convection, improve the resistance of the boundary layer to the adverse pressure gradient, and delay the separation. After the boundary layer separation, the vortex structure plays a leading role in the transition process of the separated shear layer, speeding up the transition of flow to turbulence and flow reattachment in advance.
  • [1]
    McMICHAEL C M S F, JAMES M. Micro air vehicles—toward a new dimension in flight[R]. US DAPPA/TTO Report, 1997.
    [2]
    SHYY W, LIAN Y, TANG J, et al. Aerodynamics of low Reynolds number flyers[M]. Cambridge: Cambridge University Press, 2008.
    [3]
    MUELLER T J, DeLAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35: 89–111. doi: 10.1146/annurev.fluid.35.101101.161102
    [4]
    FENG L, WEN S. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mechanics, 2007, 37(2): 257–268.
    [5]
    BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery, 2010, 132(2): 021004. doi: 10.1115/1.3066315
    [6]
    SERDAR GENÇ M, KOCA K, AÇIKEL H H. Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element[J]. Energy, 2019, 176: 320–334. doi: 10.1016/j.energy.2019.03.179
    [7]
    ZHOU Y, WANG Z J. Effect of surface roughness on laminar separation bubble over a wing at a low-Reynolds number[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 736. doi: 10.2514/6.2011-736
    [8]
    JABBARI H, ALI E, DJAVARESHKIAN M H. Acoustic and phase portrait analysis of leading-edge roughness element on laminar separation bubbles at low Reynolds number flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(9): 1782–1798. doi: 10.1177/09544100211044316
    [9]
    GROSS A, FASEL H F. Numerical investigation of passive separation control for an airfoil at low-Reynolds-number conditions[J]. AIAA Journal, 2013, 51(7): 1553–1565. doi: 10.2514/1.J051553
    [10]
    JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]//Proc of the 33rd AIAA Applied Aerodynamics Conference. 2015: 3384. doi: 10.2514/6.2015-3384
    [11]
    RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. doi: 10.2172/205563
    [12]
    CHAKROUN W, AL-MESRI I, AL-FAHAD S. Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil[J]. Wind Engineering, 2004, 28(5): 547–564. doi: 10.1260/0309524043028136
    [13]
    ZHANG Y, IGARASHI T, HU H. Experimental investiga-tions on the performance degradation of a low-Reynolds-number airfoil with distributed leading edge roughness[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 1102. doi: 10.2514/6.2011-1102
    [14]
    LIU T S, SULLIVAN J P. Luminescent oil-film skin-friction meter[J]. AIAA Journal, 1998, 36(8): 1460–1465. doi: 10.2514/2.538
    [15]
    LIU T S. Global skin friction measurements and interpre-tation[J]. Progress in Aerospace Sciences, 2019, 111: 100584. doi: 10.1016/j.paerosci.2019.100584
    [16]
    LEE T J, LEE C I, NONOMURA T, et al. Unsteady skin-friction field estimation based on global luminescent oil-film image analysis[J]. Journal of Visualization, 2020, 23(5): 763–772. doi: 10.1007/s12650-020-00661-y
    [17]
    李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015.
    [18]
    SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers[C]//Proc of the 34th Aerospace Sciences Meeting and Exhibition. 1996: 62. doi: 10.2514/6.1996-62
    [19]
    白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学 (物理学 力学 天文学), 2015, 45(2): 41–52.

    BAI P, LI F, ZHAN H L, et al. Study on nonlinear unsteady laminar separation phenomenon of airfoil with low Re number and small angle of attack[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2): 41–52.
    [20]
    YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Reynolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632: 245–271. doi: 10.1017/s0022112009007058
    [21]
    LIU C Q, YAN Y H, LU P. Physics of turbulence generation and sustenance in a boundary layer[J]. Computers & Fluids, 2014, 102: 353–384. doi: 10.1016/j.compfluid.2014.06.032
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (288) PDF downloads (38) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close