JIA D W, CHAI X. Multi-objective optimization of flow characteristics in a dual-carrier oxidation catalyst for diesel engines[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230164.
Citation: JIA D W, CHAI X. Multi-objective optimization of flow characteristics in a dual-carrier oxidation catalyst for diesel engines[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230164.

Multi-objective optimization of flow characteristics in a dual-carrier oxidation catalyst for diesel engines

More Information
  • Received Date: November 22, 2023
  • Revised Date: December 26, 2023
  • Accepted Date: January 08, 2024
  • Available Online: June 12, 2024
  • Abstracts: Diesel dual-carrier oxidation converters are widely used in diesel engine emission control, but there are problems such as short service life and low efficiency are caused due to excessive pressure loss and uneven flow in the process. In order to address this series of problems, a parametric design and optimization method for the structure of dual-carrier oxidation converter are proposed, which are used to improve the flow characteristics of the oxidation converter, namely the pressure loss and flow uniformity. A three-dimensional flow model of the oxidation reformer was established to analyze the influence of the total length of the carrier, the ratio between the gap of the double carriers and the total length of the carrier, and the ratio of the length of the carrier before and after the double carriers on the flow characteristics of the oxidation reformer. Based on the Box-Behnken experimental design and the response surface method, the flow characteristics of the two-carrier oxidation converter are studied, with the total length of the carrier, the ratio between the gap of the two carriers and the total length of the carrier, and the ratio of the length of the carrier before and after the two carriers as the optimization quantities, and the pressure loss and flow uniformity as the optimization objectives for the response surface analysis, and combined with the NSGA–Ⅱ genetic algorithm for the optimization. The results showed that the pressure loss inside the oxidation reformer was reduced by 15.24% and the flow uniformity was improved by 6.44%. This study provides a reference for the structural design of dual-carrier oxidation reformer.

  • [1]
    魏明坤. 基于GT-POWER某增压式柴油机的性能仿真[D]. 太原: 中北大学, 2023.

    WEI M K. Performance simulation of a turbocharged diesel engine based on GT-POWER[D]. Taiyuan: Central North University, 2023.
    [2]
    靳宇琪. 我国内燃机发展前景展望[J]. 内燃机与配件, 2021(2): 177–178. DOI: 10.19475/j.cnki.issn1674-957x.2021.02.083

    JIN Y Q. Prospects for the development of internal combustion engines in China[J]. Internal Combustion Engines and Accessories, 2021(2): 177–178. doi: 10.19475/j.cnki.issn1674-957x.2021.02.083
    [3]
    李宇恒. 车用增压柴油机能量流特性研究[D]. 长春: 吉林大学, 2023.

    LI Y H. Study on energy flow characteristics of vehicle turbocharged diesel engine[D]. Changchun: Jilin University, 2023.
    [4]
    林静. 世界汽车排放控制技术的发展趋势以及相关的政策[J]. 汽车科技, 1999(6): 50–53,60.

    LIN J. Development trend of automobile emission control technology in the world and related policies[J]. Automobile Science and Technology, 1999(6): 50–53,60.
    [5]
    MARTIN A P, WILL N S, BORDET A, et al. Effect of flow distribution on emissions performance of catalytic converters[R]. SAE Technical Paper 980936, 1998. doi: 10.4271/980936
    [6]
    EKSTRÖM F, ANDERSSON B. Pressure drop of monolithic catalytic converters experiments and modeling[J]. Journal of Fuels and Lubricants, 2002, 111(4): 425–433.
    [7]
    雷春青, 张光德, 谷忠雨, 等. 国内车用催化转化器模拟研究进展[J]. 汽车科技, 2010(4): 24–27. DOI: 10.3969/j.issn.1005-2550.2010.04.006

    LEI C Q, ZHANG G D, GU Z Y, et al. Progress of the simulation studies on domestic automotive catalytic converters[J]. Auto Mobile Science & Technology, 2010(4): 24–27. doi: 10.3969/j.issn.1005-2550.2010.04.006
    [8]
    帅石金, 王建昕, 庄人隽, 等. 车用催化器流场数值模拟及其在结构优化设计中的应用[J]. 内燃机学报, 2000, 18(2): 211–216. DOI: 10.3321/j.issn:1000-0909.2000.02.025

    SHUAI S J, WANG J X, ZHUANG R J, et al. Numerical simulation of flows in automotive catalytic converters and its application on optimum structure design[J]. Transactions of Csice, 2000, 18(2): 211–216. doi: 10.3321/j.issn:1000-0909.2000.02.025
    [9]
    许建民, 易际明, 刘金武, 等. 双载体催化转换器流场和压力损失分析[J]. 西华大学学报(自然科学版), 2010, 29(4): 48–51. DOI: 10.3969/j.issn.1673-159X.2010.04.014

    XU J M, YI J M, LIU J W, et al. Analysis of flow and pressure loss for dual carrier catalytic converter[J]. Journal of Xihua University (Natural Science Edition), 2010, 29(4): 48–51. doi: 10.3969/j.issn.1673-159X.2010.04.014
    [10]
    苏庆运, 王伟, 王建昕, 等. 径向变孔密度载体对汽车催化转化器反应流动的影响[J]. 内燃机学报, 2013, 31(5): 436–441.

    SU Q Y, WANG W, WANG J X, et al. Effect of radially variable cell density monolith on reactive flow of automotive catalytic converter[J]. Transactions of CSICE, 2013, 31(5): 436–441.
    [11]
    王伟. 汽车氧化转化器的数值模拟[D]. 大连: 大连理工大学, 2011.

    WANG W. Numerical simulation of automotive oxidation converters[D]. Dalian: Dalian University of Technology, 2011.
    [12]
    孙树平. 汽车双载体氧化转化器的数值模拟[D]. 大连: 大连理工大学, 2012.

    SUN S P. Numerical simulation of automotive dual carrier oxidation converter[D]. Dalian: Dalian University of Technology, 2012.
    [13]
    孙树平, 黄震, 乔信起, 等. 双载体汽车催化转化器反应流动的数值模拟[J]. 内燃机学报, 2013, 31(5): 461–466.

    SUN S P, HUANG Z, QIAO X Q, et al. Numerical simulation of reactive flow in dual-substrate catalytic converter[J]. Transactions of CSICE, 2013, 31(5): 461–466.
    [14]
    王佳炜. 基于DOC的柴油/天然气双燃料发动机排放的数值模拟与试验研究 [D]. 镇江: 江苏大学, 2018.

    WANG J W. Numerical simulation and experimental study on emissions of diesel/natural gas dual-fuel engine based on DOC [D]. Zhenjiang: Jiangsu University, 2018.
    [15]
    MLADENOV N, KOOP J, TISCHER S, et al. Modeling of transport and chemistry in channel flows of automotive catalytic converters[J]. Chemical Engineering Science, 2010, 65(2): 812–826. doi: 10.1016/j.ces.2009.09.034
    [16]
    ZUO Q S, XIE Y, JIAQIANG E, et al. Effect of different exhaust parameters on NO conversion efficiency enhancement of a dual-carrier catalytic converter in the gasoline engine[J]. Energy, 2020, 191: 116521. doi: 10.1016/j.energy.2019.116521
    [17]
    CHAKRAVARTHY V K, CONKLIN J C, DAW C S, et al. Multi-dimensional simulations of cold-start transients in a catalytic converter under steady inflow conditions[J]. Applied Catalysis A: General, 2003, 241(1-2): 289–306. doi: 10.1016/S0926-860X(02)00490-8
    [18]
    TSINOGLOU D N, KOLTSAKIS G C, MISSIRLIS D K, et al. Transient modelling of flow distribution in automotive catalytic converters[J]. Applied Mathematical Modelling, 2004, 28(9): 775–794. doi: 10.1016/j.apm.2003.12.006
    [19]
    WELTENS H, BRESSLER H, TERRES F, et al. Optimisation of catalytic converter gas flow distribution by CFD prediction[R]. SAE Technical Paper 930780, 1993. doi: 10.4271/930780
    [20]
    IBRAHIM H A, AHMED W H, ABDOU S, et al. Experimental and numerical investigations of flow through catalytic converters[J]. International Journal of Heat and Mass Transfer, 2018, 127(Part B): 546-560. doi: 10.1016/j.ijheatmasstransfer.2018.07.052
    [21]
    李红, 杨兴标, 李磊, 等. 基于析因试验的喷滴灌两用自吸泵设计[J]. 农业工程学报, 2014, 30(15): 93–97. DOI: 10.3969/j.issn.1002-6819.2014.15.013

    LI H, YANG X B, LI L, et al. Design of sprinkler-drip dual-purpose self-priming pump based on design of experiment[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(15): 93–97. doi: 10.3969/j.issn.1002-6819.2014.15.013
    [22]
    袁寿其, 王文杰, 裴吉, 等. 低比转数离心泵的多目标优化设计[J]. 农业工程学报, 2015, 31(5): 46–52. DOI: 10.3969/j.issn.1002-6819.2015.05.007

    YUAN S Q, WANG W J, PEI J, et al. Multi-objective optimization of low-specific-speed centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(5): 46–52. doi: 10.3969/j.issn.1002-6819.2015.05.007
    [23]
    梁存光, 李新梅. 曲面响应法在等离子喷涂WC–12Co涂层工艺优化中的应用[J]. 材料科学与工艺, 2018, 26(2): 90–96. DOI: 10.11951/j.issn.1005-0299.20170126

    LIANG C G, LI X M. Application of response surface methodology in the process optimization of WC–12Co coatings by APS[J]. Materials Science and Technology, 2018, 26(2): 90–96. doi: 10.11951/j.issn.1005-0299.20170126
    [24]
    杨泽青, 张炳寅, 刘丽冰, 等. 自适应遗传算法在直线电机进给系统伺服参数优化中的应用研究[J]. 机械科学与技术, 2019, 38(12): 1921–1927. DOI: 10.13433/j.cnki.1003-8728.20190072

    YANG Z Q, ZHANG B Y, LIU L B, et al. Application of adaptive genetic algorithm to servo parameter optimization of linear motor feed system[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(12): 1921–1927. doi: 10.13433/j.cnki.1003-8728.20190072
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (49) PDF downloads (1) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close