Citation: | ZHANG R M, CAI H T, ZHAO Y G. Research progress of icing on droplet impinging[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240020. |
Icing in the form of impinging supercooled droplets accounts for the most cases of aircraft icing. This review provides an indepth discussion over single sessile droplet icing, impinging of a droplet, and the combined icing of an impinging droplet. Special focus is placed on icing of an impinging supercooled large droplet, which is of significant importance in the study of aircraft icing. The effects of a few key parameters, such as the impinging speed and droplet size, are studied and analyzed. Meanwhile, by studying the factors influencing the dynamics of droplet impact icing, the icing phenomena of room temperature droplets and supercooled droplets are investigated, and it turns out that the initial thermophysical properties, heat transfer mechanisms and phase transition modes vary drastically, and the kinetic behaviors such as nucleation time, ice crystal type, interfacial heat transfer characteristics and phase advancing velocity as well as the droplet morphology are significantly different. The effects of the impact velocity, particle size and surface wetting on droplet impact icing are indicated, providing a theoretical basis and reference for the design and development of anti-deicing technology for aircraft.
[1] |
邵元培, 车竞, 丁娣. 大飞机机翼结冰对飞行动力学特性影响研究[J]. 飞行力学, 2018, 36(1): 12–15, 19. DOI: 10.13645/j.cnki.f.d.20170824.002
SHAO Y P, CHE J, DING D. Study on the influence of wing icing on flight dynamics characteristics of large aircraft[J]. Flight Dynamics, 2018, 36(1): 12–15, 19. doi: 10.13645/j.cnki.f.d.20170824.002
|
[2] |
桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报, 2017, 38(2): 1–12. DOI: 10.7527/S1000-6893.2016.0280
GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 1–12. doi: 10.7527/S1000-6893.2016.0280
|
[3] |
United States. National Transportation Safety Board. Aircraft Accident Report: In-flight icing encounter and uncontrolled collision with terrain, COMAIR flight 3272, Embraer EMB-120RT, N265CA, Monroe, Michigan, January 9, 1997[R/OL]. Washington, D. C. : The Board; Springfield, Va. : National Technical Information Service, 1998. (1999-06-14)[2024-03-15]. https://www.ntsb.gov/investigations/AccidentReports/Reports/AAR9804_body.pdf.
|
[4] |
CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35: 11–21. doi: 10.1146/annurev.fluid.35.101101.161217
|
[5] |
王桥, 肖京平, 刘森云, 等. 过冷大水滴变形及阻力特性的温度影响实验研究[J]. 实验流体力学, 2016, 30(3): 21–26. DOI: 10.11729/syltlx20160028
WANG Q, XIAO J P, LIU S Y, et al. Experimental study on temperature effect on deformation and drag characteris-tics of supercooled large droplet[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 21–26. doi: 10.11729/syltlx20160028
|
[6] |
FANG W Z, ZHU F Q, ZHU L L, et al. Self-peeling of frozen water droplets upon impacting a cold surface[J]. Communications Physics, 2022, 5: 51. doi: 10.1038/s42005-022-00827-0
|
[7] |
ZHANG X, LI K L, ZHU Z B, et al. Droplet impact and freezing dynamics on ultra-cold surfaces: a scaling analysis of central-concave pattern[J]. Applied Thermal Engineering, 2024, 239: 122135. doi: 10.1016/j.applthermaleng.2023.122135
|
[8] |
曾昊, 王峰, 孙超. 液滴结冰研究中的光学测量方法[J]. 力学学报, 2024, 56(6): 1-19.
ZENG H, WANG F, SUN C. On the optical measurement techniques for droplet icing experiments. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(6): 1-19. doi: 10.6052/0459-1879-23-643
|
[9] |
WILDEMAN S, VISSER C W, SUN C, et al. On the spreading of impacting drops[J]. Journal of Fluid Mechanics, 2016, 805: 636–655. doi: 10.1017/jfm.2016.584
|
[10] |
ZHANG H F, ZHAO Y G, LV R, et al. Freezing of sessile water droplet for various contact angles[J]. International Journal of Thermal Sciences, 2016, 101: 59–67. doi: 10.1016/j.ijthermalsci.2015.10.027
|
[11] |
LU M L, SONG M J, PANG X L, et al. Modeling study on sessile water droplet during freezing with the consideration of gravity, supercooling, and volume expansion effects[J]. International Journal of Multiphase Flow, 2022, 147: 103909. doi: 10.1016/j.ijmultiphaseflow.2021.103909
|
[12] |
KANT P, KOLDEWEIJ R B J, HARTH K, et al. Fast-freezing kinetics inside a droplet impacting on a cold surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(6): 2788–2794. doi: 10.1073/pnas.1912406117
|
[13] |
ZHAO Y G, ZUO Z C, TANG H B, et al. Ice coverage induced by depositing a water drop onto the supercooled substrate at extreme low vapor pressure[J]. Crystals, 2021, 11(6): 691. doi: 10.3390/cryst11060691
|
[14] |
CLANET C, BÉGUIN C, RICHARD D, et al. Maximal deformation of an impacting drop[J]. Journal of Fluid Mechanics, 2004, 517: 199–208. doi: 10.1017/S0022112004000904
|
[15] |
JOSSERAND C, THORODDSEN S T. Drop impact on a solid surface[J]. Annual Review of Fluid Mechanics, 2016, 48: 365–391. doi: 10.1146/annurev-fluid-122414-034401
|
[16] |
CHANDRA S, AVEDISIAN C T. On the collision of a droplet with a solid surface[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1991, 432(1884): 13–41. doi: 10.1098/rspa.1991.0002
|
[17] |
RICHARD D, CLANET C, QUÉRÉ D. Contact time of a bouncing drop[J]. Nature, 2002, 417: 811. doi: 10.1038/417811a
|
[18] |
PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650–659. doi: 10.1063/1.868850
|
[19] |
FLETCHER N H. The Chemical Physics of Ice[M]. Cambridge: Cambridge University Press, 1970.
|
[20] |
OKUMURA K, CHEVY F, RICHARD D, et al. Water spring: a model for bouncing drops[J]. Europhysics Letters (EPL), 2003, 62(2): 237–243. doi: 10.1209/epl/i2003-00340-1
|
[21] |
BIRD J C, DHIMAN R, KWON H M, et al. Reducing the contact time of a bouncing drop[J]. Nature, 2013, 503: 385–388. doi: 10.1038/nature12740
|
[22] |
LIU Y H, MOEVIUS L, XU X P, et al. Pancake bouncing on superhydrophobic surfaces[J]. Nature Physics, 2014, 10: 515–519. doi: 10.1038/nphys2980
|
[23] |
GURGANUS C, KOSTINSKI A B, SHAW R A. High-speed imaging of freezing drops: still No preference for the contact line[J]. The Journal of Physical Chemistry C, 2013, 117(12): 6195–6200. doi: 10.1021/jp311832d
|
[24] |
JUNG S, TIWARI M K, DOAN N V, et al. Mechanism of supercooled droplet freezing on surfaces[J]. Nature Communications, 2012, 3: 615. doi: 10.1038/ncomms1630
|
[25] |
MARÍN A G, ENRÍQUEZ O R, BRUNET P, et al. Universality of tip singularity formation in freezing water drops[J]. Physical Review Letters, 2014, 113(5): 054301. doi: 10.1103/PhysRevLett.113.054301
|
[26] |
WILDEMAN S, STERL S, SUN C, et al. Fast dynamics of water droplets freezing from the outside in[J]. Physical Review Letters, 2017, 118(8): 084101. doi: 10.1103/physrevlett.118.084101
|
[27] |
GUADARRAMA-CETINA J, MONGRUEL A, GONZÁLEZ-VIÑAS W, et al. Percolation-induced frost formation[J]. EPL (Europhysics Letters), 2013, 101(1): 16009. doi: 10.1209/0295-5075/101/16009
|
[28] |
ZHAO Y G, WANG R Z, YANG C. Interdroplet freezing wave propagation of condensation frosting on micropillar patterned superhydrophobic surfaces of varying pitches[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1048–1056. doi: 10.1016/j.ijheatmasstransfer.2016.12.112
|
[29] |
WANG X, XU B, GUO S, et al. Droplet impacting dynamics: recent progress and future aspects[J]. Advances in Colloid and Interface Science, 2023, 317: 102919. doi: 10.1016/j.cis.2023.102919
|
[30] |
THIÉVENAZ V, SÉON T, JOSSERAND C. Solidification dynamics of an impacted drop[J]. Journal of Fluid Mechanics, 2019, 874: 756–773. doi: 10.1017/jfm.2019.459
|
[31] |
JU J J, YANG Z G, YI X, et al. Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface[J]. Physics of Fluids, 2019, 31(5): 057107. doi: 10.1063/1.5094691
|
[32] |
CHANG S N, SONG H, WU K. Experimental investigation on impact dynamics and freezing performance of water droplet on horizontal cold surface[J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101128. doi: 10.1016/j.seta.2021.101128
|
[33] |
STITI M, CASTANET G, LABERGUE A, et al. Icing of a droplet deposited onto a subcooled surface[J]. International Journal of Heat and Mass Transfer, 2020, 159: 120116. doi: 10.1016/j.ijheatmasstransfer.2020.120116
|
[34] |
WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831–842. doi: 10.1016/j.ijheatmasstransfer.2018.10.142
|
[35] |
SINGH D, KUMAR A. Numerical and experimental analysis of rapid solidification considering undercooling effect during water droplet impact on a substrate[J]. Thermal Science and Engineering Progress, 2020, 20: 100722. doi: 10.1016/j.tsep.2020.100722
|
[36] |
SUN M M, KONG W L, WANG F X, et al. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118431. doi: 10.1016/j.ijheatmasstransfer.2019.07.081
|
[37] |
ZHANG X, LIU X, WU X M, et al. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: rebound and adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997. doi: 10.1016/j.ijheatmasstransfer.2020.119997
|
[38] |
SCHREMB M, ROISMAN I V, TROPEA C. Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling[J]. Journal of Fluid Mechanics, 2018, 835: 1087–1107. doi: 10.1017/jfm.2017.797
|
[39] |
KONG W L, WU H C, BIAN P X, et al. A diffusion-enhancing icing theory for the freezing transition of supercooled large water droplet in impact[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122471. doi: 10.1016/j.ijheatmasstransfer.2021.122471
|
[40] |
PAN Y T, SHI K W, DUAN X L, et al. Experimental investigation of water droplet impact and freezing on micropatterned stainless steel surfaces with varying wettabilities[J]. International Journal of Heat and Mass Transfer, 2019, 129: 953–964. doi: 10.1016/j.ijheatmasstransfer.2018.10.032
|
[41] |
JIN Z Y, ZHANG H H, YANG Z G. Experimental investigation of the impact and freezing processes of a water droplet on an ice surface[J]. International Journal of Heat and Mass Transfer, 2017, 109: 716–724. doi: 10.1016/j.ijheatmasstransfer.2017.02.055
|
[42] |
HU H B, HE Q, YU S X, et al. Freezing behavior of droplet impacting on cold surfaces[J]. Acta Physica Sinica, 2016, 65(10): 104703. doi: 10.7498/aps.65.104703
|
[43] |
ZHANG H X, YI X, DU Y X, et al. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces[J]. Physics of Fluids, 2019, 31(3): 032104. doi: 10.1063/1.5083070
|
[44] |
CAO Y H, XIN M. Numerical simulation of supercooled large droplet icing phenomenon: a review[J]. Archives of Computational Methods in Engineering, 2020, 27(4): 1231–1265. doi: 10.1007/s11831-019-09349-5
|
[45] |
LIU Y Z, WANG T B, SONG Z Y, et al. Spreading and freezing of supercooled water droplets impacting an ice surface[J]. Applied Surface Science, 2022, 583: 152374. doi: 10.1016/j.apsusc.2021.152374
|
[46] |
MEHDIZADEH N Z, CHANDRA S, MOSTAGHIMI J. Formation of fingers around the edges of a drop hitting a metal plate with high velocity[J]. Journal of Fluid Mechanics, 2004, 510: 353–373. doi: 10.1017/s0022112004009310
|
[47] |
DHIMAN R, CHANDRA S. Rupture of thin films formed during droplet impact[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2116): 1229–1245. doi: 10.1098/rspa.2009.0425
|
[48] |
MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103. doi: 10.1063/1.5086884
|
[49] |
高郭池, 李保良, 丁丽, 等. 气动除冰飞机结冰风洞试验技术[J]. 实验流体力学, 2019, 33(2): 95–101. DOI: 10.11729/syltlx20180064
GAO G C, LI B L, DING L, et al. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95–101. doi: 10.11729/syltlx20180064
|
[50] |
易贤, 王斌, 李伟斌, 等. 飞机结冰冰形测量方法研究进展[J]. 航空学报, 2017, 38(2): 520700–520711. DOI: 10.7527/S1000-6893.2016.0276
YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircraft icing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520700–520711. doi: 10.7527/S1000-6893.2016.0276
|
[51] |
ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6): 062107. doi: 10.1063/1.4953411
|
[52] |
TAN C, PAPADAKIS M, MILLER D, et al. Experimental study of large droplet splashing and breakup[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 904. doi: 10.2514/6.2007-904
|
[53] |
郭向东, 柳庆林, 刘森云, 等. 结冰风洞中过冷大水滴云雾演化特性数值研究[J]. 航空学报, 2020, 41(8): 123655. DOI: 10.7527/S1000-6893.2019.23655
GUO X D, LIU Q L, LIU S Y, et al. Numerical study of supercooled large droplet cloud evolution characteristics in icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123655. doi: 10.7527/S1000-6893.2019.23655
|
[54] |
陈舒越, 郭向东, 王梓旭, 等. 结冰风洞过冷大水滴粒径测量初步研究[J]. 实验流体力学, 2021, 35(3): 22–29. DOI: 10.11729/syltlx20200104
CHEN S Y, GUO X D, WANG Z X, et al. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22–29. doi: 10.11729/syltlx20200104
|
[55] |
FLETCHER N H. Size effect in heterogeneous nucleation[J]. The Journal of Chemical Physics, 1958, 29(3): 572–576. doi: 10.1063/1.1744540
|
[56] |
JOHARI G P. Water’s size-dependent freezing to cubic ice[J]. The Journal of Chemical Physics, 2005, 122(19): 194504. doi: 10.1063/1.1900723
|
[57] |
LAAN N, DE BRUIN K G, BARTOLO D, et al. Maximum diameter of impacting liquid droplets[J]. Physical Review Applied, 2014, 2(4): 044018. doi: 10.1103/PhysRevApplied.2.044018
|
[58] |
WANG C, CHANG S, LENG M, et al. A two-dimensional splashing model for investigating impingement characteris-tics of supercooled large droplets[J]. International Journal of Multiphase Flow, 2016, 80: 131–149. doi: 10.1016/j.ijmultiphaseflow.2015.12.005
|
[59] |
GENT R, FORD J, MOSER R, et al. Results from SLD mass loss tests in the ACT Luton icing research wind tunnel[C]//Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. 2003: 389. doi: 10.2514/6.2003-389
|
[60] |
LI J F, ZHAO C, WANG C Y. Experimental study on the dynamics of droplet impacting on solid surface[J]. Microfluidics and Nanofluidics, 2023, 27(10): 69. doi: 10.1007/s10404-023-02680-1
|
[61] |
SHEN F Q, FANG W Z, ZHU F Q, et al. Freezing behaviors of an impacting droplet on subcooled hydrophobic surfaces[J]. Applied Thermal Engineering, 2024, 236: 121535. doi: 10.1016/j.applthermaleng.2023.121535
|
[62] |
WU H C, KONG W L, BIAN P X, et al. The coupled impact-freezing mechanism of supercooled droplet on superhydrophobic surface[J]. Aerospace Systems, 2024, 7(1): 11–28. doi: 10.1007/s42401-023-00192-y
|
[63] |
ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology, 2011, 67(1-2): 58–67. doi: 10.1016/j.coldregions.2011.02.006
|
[64] |
ZHANG R, HAO P F, ZHANG X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122: 395–402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076
|
[65] |
ZHOU X, WANG H, WU J J, et al. Bounce behaviors of double droplets simultaneously impact cold superhydro-phobic surface[J]. International Journal of Heat and Mass Transfer, 2023, 208: 124075. doi: 10.1016/j.ijheatmasstransfer.2023.124075
|
[66] |
CHANG S N, QI H F, ZHOU S, et al. Experimental study on freezing characteristics of water droplets on cold surfaces[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123108. doi: 10.1016/j.ijheatmasstransfer.2022.123108
|
[67] |
邱超, 杨京龙, 寇祎. 飞机防冰除冰技术的研究进展[J]. 西安航空学院学报, 2023, 41(3): 1–8, 14. DOI: 10.20096/j.xhxb.1008-9233.2023.03.001
QIU C, YANG J L, KOU Y. Research progress of anti-icing and de-icing technology for aircraft[J]. Journal of Xi’an Aeronautical Institute, 2023, 41(3): 1–8, 14. doi: 10.20096/j.xhxb.1008-9233.2023.03.001
|
[68] |
SHEN Y Z, WU Y, TAO J, et al. Spraying fabrication of durable and transparent coatings for anti-icing application: dynamic water repellency, icing delay, and ice adhesion[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3590–3598. doi: 10.1021/acsami.8b19225
|
[69] |
WANG Y B, XU Y M, HUANG Q. Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 638–645. doi: 10.1016/j.rser.2017.05.129
|