Citation: | OU Y Y, WEN M F, WANG Y P, et al. Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220086. |
[1] |
NODA Y, MATSUI H, MINEMAWARI H, et al. Observation and simulation of microdroplet shapes on surface-energy-patterned substrates: contact line engineering for printed electronics[J]. Journal of Applied Physics, 2013, 114(4): 044905. doi: 10.1063/1.4816461
|
[2] |
TAN S H, NGUYEN N T, YOBAS L, et al. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. Journal of Micromechanics and Microengineering, 2010, 20(4): 045004. doi: 10.1088/0960-1317/20/4/045004
|
[3] |
李德才. 磁性液体密封理论及应用[M]. 北京: 科学出版社, 2010.
LI D C. Theory and application of magnetic seal[M]. Beijing: Science Press, 2010.
|
[4] |
MAHENDRAN V, PHILIP J. Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials[J]. Applied Physics Letters, 2012, 100(7): 073104. doi: 10.1063/1.3684969
|
[5] |
ZAIBUDEEN A W, PHILIP J. Magnetic nanofluid based non-enzymatic sensor for urea detection[J]. Sensors and Actuators B:Chemical, 2018, 255: 720–728. doi: 10.1016/j.snb.2017.08.065
|
[6] |
PHILIP J, SHIMA P D, RAJ B. Nanofluid with tunable thermal properties[J]. Applied Physics Letters, 2008, 92(4): 043108. doi: 10.1063/1.2838304
|
[7] |
YAMAGUCHI H. Energy transport in cooling device by magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2017, 431: 229–236. doi: 10.1016/j.jmmm.2016.08.083
|
[8] |
AZIZIAN R, DOROODCHI E, McKRELL T, et al. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 68: 94–109. doi: 10.1016/j.ijheatmasstransfer.2013.09.011
|
[9] |
FADAEI F, SHAHROKHI M, DEHKORDI A M, et al. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2017, 429: 314–323. doi: 10.1016/j.jmmm.2017.01.046
|
[10] |
RAJ K, MOSKOWITZ R. Commercial applications of ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 1990, 85(1-3): 233–245. doi: 10.1016/0304-8853(90)90058-X
|
[11] |
VOLTAIRAS P A, FOTIADIS D I, MICHALIS L K. Hydrodynamics of magnetic drug targeting[J]. Journal of Biomechanics, 2002, 35(6): 813–821. doi: 10.1016/S0021-9290(02)00034-9
|
[12] |
GALLO J M, GUPTA P K, HUNG C T, ET AL. Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat[J]. Journal of Pharmaceutical Sciences, 1989, 78(3): 190–194. doi: 10.1002/jps.2600780303
|
[13] |
SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2011, 75(1): 016601.
|
[14] |
SEMPREBON C, MISTURA G, ORLANDINI E, et al. Anisotropy of water droplets on single rectangular posts[J]. Langmuir, 2009, 25(10): 5619–5625. doi: 10.1021/la8041742
|
[15] |
VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6): 066101. doi: 10.1103/physrevlett.111.066101
|
[16] |
VARAGNOLO S, SCHIOCCHET V, FERRARO D, et al. Tuning drop motion by chemical patterning of surfaces[J]. Langmuir, 2014, 30(9): 2401–2409. doi: 10.1021/la404502g
|
[17] |
CHEN Y, HE B, LEE J H, et al. Anisotropy in the wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2005, 281(2): 458–464. doi: 10.1016/j.jcis.2004.07.038
|
[18] |
GAU H, HERMINGHAUS S, LENZ P, et al. Liquid morphologies on structured surfaces: from microchannels to microchips[J]. Science, 1999, 283(5398): 46–49. doi: 10.1126/science.283.5398.46
|
[19] |
YEO L Y, FRIEND J R. Surface acoustic wave microfluidics[J]. Annual Review of Fluid Mechanics, 2014, 46: 379–406. doi: 10.1146/annurev-fluid-010313-141418
|
[20] |
BRUNET P, EGGERS J, DEEGAN R D. Vibration-induced climbing of drops[J]. Physical Review Letters, 2007, 99(14): 144501. doi: 10.1103/PhysRevLett.99.144501
|
[21] |
NOBLIN X, KOFMAN R, CELESTINI F. Ratchetlike motion of a Shaken drop[J]. Physical Review Letters, 2009, 102(19): 194504. doi: 10.1103/physrevlett.102.194504
|
[22] |
SARTORI P, QUAGLIATI D, VARAGNOLO S, et al. Drop motion induced by vertical vibrations[J]. New Journal of Physics, 2015, 17(11): 113017. doi: 10.1088/1367-2630/17/11/113017
|
[23] |
PIROIRD K, TEXIER B D, CLANET C, et al. Reshaping and capturing Leidenfrost drops with a magnet[J]. Physics of Fluids, 2013, 25(3): 032108. doi: 10.1063/1.4796133
|
[24] |
QUÉRÉ D. Leidenfrost dynamics[J]. Annual Review of Fluid Mechanics, 2013, 45: 197–215. doi: 10.1146/annurev-fluid-011212-140709
|
[25] |
AFKHAMI S, RENARDY Y, RENARDY M, et al. Field-induced motion of ferrofluid droplets through immiscible viscous media[J]. Journal of Fluid Mechanics, 2008, 610: 363–380. doi: 10.1017/s0022112008002589
|
[26] |
NGUYEN N T, ZHU G P, CHUA Y C, et al. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet[J]. Langmuir, 2010, 26(15): 12553–12559. doi: 10.1021/la101474e
|
[27] |
TSAI S S H, GRIFFITHS I M, LI Z Z, et al. Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment[J]. Soft Matter, 2013, 9(35): 8600–8608. doi: 10.1039/C3SM51403J
|
[28] |
ZHU G P, NGUYEN N T, RAMANUJAN R V, et al. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field[J]. Langmuir, 2011, 27(24): 14834–14841. doi: 10.1021/la203931q
|
[29] |
SOUZA P J Jr, LIRA S H A, DE OLIVEIRA I N. Wetting dynamics of ferrofluids on substrates with different hydrophilicity behaviors[J]. Journal of Magnetism and Magnetic Materials, 2019, 483: 129–135. doi: 10.1016/j.jmmm.2019.03.069
|
[30] |
BERIM G O, RUCKENSTEIN E. Nanodrop of an Ising magnetic fluid on a solid surface[J]. Langmuir, 2011, 27(14): 8753–8760. doi: 10.1021/la2011919
|
[31] |
TENNETI S, SUBRAMANIAN S G, CHAKRABORTY M, et al. Magnetowetting of ferrofluidic thin liquid films[J]. Scientific Reports, 2017, 7: 44738. doi: 10.1038/srep44738
|
[32] |
AHMED A, FLECK B A, WAGHMARE P R. Maximum spreading of a ferrofluid droplet under the effect of magnetic field[J]. Physics of Fluids, 2018, 30(7): 077102. doi: 10.1063/1.5032113
|
[33] |
AHMED A, QURESHI A J, FLECK B A, et al. Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet[J]. Journal of Colloid and Interface Science, 2018, 532: 309–320. doi: 10.1016/j.jcis.2018.07.110
|
[34] |
BERTHIER J, SILBERZAN P. Microfluidics for biotechnology[M]. 2nd ed. Boston: Artech House, 2010
|
[35] |
ZIMMELS Y. The Bernoulli equation for fluids in electromagnetic and interfacial systems[J]. Journal of Colloid and Interface Science, 1988, 125(2): 399–419. doi: 10.1016/0021-9797(88)90004-5
|
[1] | WANG Zirui, ZHANG Ke, DUAN Jingtian, WU Junmei, LAN Zhike. Application of MRV in experimental investigation of flow field characteristics in a coolant channel within a fuel assembly[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230167 |
[2] | YU Xinning, JIANG Xintong, ZHANG Jun, ZHOU Tingbo, NI Zhangsong. Application of typical magnetic suspension system in maglev flight wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 27-36. DOI: 10.11729/syltlx20220149 |
[3] | DUAN Jingtian, WANG Zirui, ZHANG Ke, LEI Jiang, WU Junmei. Investigation on full field three-dimensional flow in a multi-pass channel based on Magnetic Resonance Velocimetry (MRV)[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230015 |
[4] | QIU Yue, YANG Yifan, YU Dachuan, ZHU Chunling. Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220085 |
[5] | CHEN Wei, WANG Lei, WU Yue. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220099 |
[6] | YI Wentong, ZHU Yiwen, LIU Wenzhong. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 1-8. DOI: 10.11729/syltlx20210107 |
[7] | Kang Hongming, Huo Guo, Chen Fuzheng, Liu Xiaolin. Design and application of digital valve in gas supply control system for wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 88-92. DOI: 10.11729/syltlx20160086 |
[8] | Di Qingfeng, Hua Shuai, Gu Chunyuan, Ye Feng, Pang Dongshan, Jiang Fan, Yang Peiqiang. Study of micro flow visualization with nuclear magnetic resonance in core[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 98-103. DOI: 10.11729/syltlx20150107 |
[9] | WANG Hua-feng, CHENG Wan, LI Zhan-hua. The enhancing effect of magnetic nano-particles on the liquid's mixing in microchannels[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 54-58. DOI: 10.3969/j.issn.1672-9897.2007.01.011 |
[10] | DU Bai-he, LI Lin-cun, MA Qiang, CHEN Quan, ZHAO Yu-han, XIA Wei-dong. Experimental study on arc movement images effected by magnetic diffusing[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50. DOI: 10.3969/j.issn.1672-9897.2005.03.010 |