OU Y Y, WEN M F, WANG Y P, et al. Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220086.
Citation: OU Y Y, WEN M F, WANG Y P, et al. Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220086.

Influence and regulation of magnetic field on wettability of ferrofluid droplet on hydrophobic surface

More Information
  • Received Date: August 29, 2022
  • Revised Date: November 03, 2022
  • Accepted Date: November 26, 2022
  • Available Online: February 28, 2023
  • The controllable dynamic behavior of ferrofluid droplets under the magnetic field can be used to realize directional transport of small droplets or bubbles in microfluidic devices, anti-icing, droplet condensation, mineral flotation and other fields. At present, the mechanism, influencing factors and regulation methods of the field-assisted wetting behavior of magnetic fluid on the superhydrophobic surface are not clear. The wetting behavior and droplet shape evolutions of water-based ferrofluid on a hydrophobic surface under an external magnetic field are studied experimentally. Under the vertical magnetic field, the effects of the magnetic induction intensity and ferrofluid droplet size on the droplet wetting behaviors are investigated, and the contact line diameter and contact angle of the droplet are measured experimentally. The experimental results show that the apparent contact angle of the ferrofluid droplets decreases from above 90° to below 90° under the action of the weak magnetic field. Under the magnetic field, the nanomagnetic particles in the magnetic fluid form a chain structure along the direction of the magnetic field line and the droplet contact angle changes. Through a scaling analysis, the theoretical relationship of the magnetic field and the contact angle is established and it successfully predicts our experimental results. The work is valuable for controlling the wetting properties of the ferrofluid droplets on the solid surfaces under the magnetic field.
  • [1]
    NODA Y, MATSUI H, MINEMAWARI H, et al. Observation and simulation of microdroplet shapes on surface-energy-patterned substrates: contact line engineering for printed electronics[J]. Journal of Applied Physics, 2013, 114(4): 044905. doi: 10.1063/1.4816461
    [2]
    TAN S H, NGUYEN N T, YOBAS L, et al. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction[J]. Journal of Micromechanics and Microengineering, 2010, 20(4): 045004. doi: 10.1088/0960-1317/20/4/045004
    [3]
    李德才. 磁性液体密封理论及应用[M]. 北京: 科学出版社, 2010.

    LI D C. Theory and application of magnetic seal[M]. Beijing: Science Press, 2010.
    [4]
    MAHENDRAN V, PHILIP J. Nanofluid based optical sensor for rapid visual inspection of defects in ferromagnetic materials[J]. Applied Physics Letters, 2012, 100(7): 073104. doi: 10.1063/1.3684969
    [5]
    ZAIBUDEEN A W, PHILIP J. Magnetic nanofluid based non-enzymatic sensor for urea detection[J]. Sensors and Actuators B:Chemical, 2018, 255: 720–728. doi: 10.1016/j.snb.2017.08.065
    [6]
    PHILIP J, SHIMA P D, RAJ B. Nanofluid with tunable thermal properties[J]. Applied Physics Letters, 2008, 92(4): 043108. doi: 10.1063/1.2838304
    [7]
    YAMAGUCHI H. Energy transport in cooling device by magnetic fluid[J]. Journal of Magnetism and Magnetic Materials, 2017, 431: 229–236. doi: 10.1016/j.jmmm.2016.08.083
    [8]
    AZIZIAN R, DOROODCHI E, McKRELL T, et al. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids[J]. International Journal of Heat and Mass Transfer, 2014, 68: 94–109. doi: 10.1016/j.ijheatmasstransfer.2013.09.011
    [9]
    FADAEI F, SHAHROKHI M, DEHKORDI A M, et al. Heat transfer enhancement of Fe3O4 ferrofluids in the presence of magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2017, 429: 314–323. doi: 10.1016/j.jmmm.2017.01.046
    [10]
    RAJ K, MOSKOWITZ R. Commercial applications of ferrofluids[J]. Journal of Magnetism and Magnetic Materials, 1990, 85(1-3): 233–245. doi: 10.1016/0304-8853(90)90058-X
    [11]
    VOLTAIRAS P A, FOTIADIS D I, MICHALIS L K. Hydrodynamics of magnetic drug targeting[J]. Journal of Biomechanics, 2002, 35(6): 813–821. doi: 10.1016/S0021-9290(02)00034-9
    [12]
    GALLO J M, GUPTA P K, HUNG C T, ET AL. Evaluation of drug delivery following the administration of magnetic albumin microspheres containing adriamycin to the rat[J]. Journal of Pharmaceutical Sciences, 1989, 78(3): 190–194. doi: 10.1002/jps.2600780303
    [13]
    SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2011, 75(1): 016601.
    [14]
    SEMPREBON C, MISTURA G, ORLANDINI E, et al. Anisotropy of water droplets on single rectangular posts[J]. Langmuir, 2009, 25(10): 5619–5625. doi: 10.1021/la8041742
    [15]
    VARAGNOLO S, FERRARO D, FANTINEL P, et al. Stick-slip sliding of water drops on chemically heterogeneous surfaces[J]. Physical Review Letters, 2013, 111(6): 066101. doi: 10.1103/physrevlett.111.066101
    [16]
    VARAGNOLO S, SCHIOCCHET V, FERRARO D, et al. Tuning drop motion by chemical patterning of surfaces[J]. Langmuir, 2014, 30(9): 2401–2409. doi: 10.1021/la404502g
    [17]
    CHEN Y, HE B, LEE J H, et al. Anisotropy in the wetting of rough surfaces[J]. Journal of Colloid and Interface Science, 2005, 281(2): 458–464. doi: 10.1016/j.jcis.2004.07.038
    [18]
    GAU H, HERMINGHAUS S, LENZ P, et al. Liquid morphologies on structured surfaces: from microchannels to microchips[J]. Science, 1999, 283(5398): 46–49. doi: 10.1126/science.283.5398.46
    [19]
    YEO L Y, FRIEND J R. Surface acoustic wave microfluidics[J]. Annual Review of Fluid Mechanics, 2014, 46: 379–406. doi: 10.1146/annurev-fluid-010313-141418
    [20]
    BRUNET P, EGGERS J, DEEGAN R D. Vibration-induced climbing of drops[J]. Physical Review Letters, 2007, 99(14): 144501. doi: 10.1103/PhysRevLett.99.144501
    [21]
    NOBLIN X, KOFMAN R, CELESTINI F. Ratchetlike motion of a Shaken drop[J]. Physical Review Letters, 2009, 102(19): 194504. doi: 10.1103/physrevlett.102.194504
    [22]
    SARTORI P, QUAGLIATI D, VARAGNOLO S, et al. Drop motion induced by vertical vibrations[J]. New Journal of Physics, 2015, 17(11): 113017. doi: 10.1088/1367-2630/17/11/113017
    [23]
    PIROIRD K, TEXIER B D, CLANET C, et al. Reshaping and capturing Leidenfrost drops with a magnet[J]. Physics of Fluids, 2013, 25(3): 032108. doi: 10.1063/1.4796133
    [24]
    QUÉRÉ D. Leidenfrost dynamics[J]. Annual Review of Fluid Mechanics, 2013, 45: 197–215. doi: 10.1146/annurev-fluid-011212-140709
    [25]
    AFKHAMI S, RENARDY Y, RENARDY M, et al. Field-induced motion of ferrofluid droplets through immiscible viscous media[J]. Journal of Fluid Mechanics, 2008, 610: 363–380. doi: 10.1017/s0022112008002589
    [26]
    NGUYEN N T, ZHU G P, CHUA Y C, et al. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet[J]. Langmuir, 2010, 26(15): 12553–12559. doi: 10.1021/la101474e
    [27]
    TSAI S S H, GRIFFITHS I M, LI Z Z, et al. Interfacial deflection and jetting of a paramagnetic particle-laden fluid: theory and experiment[J]. Soft Matter, 2013, 9(35): 8600–8608. doi: 10.1039/C3SM51403J
    [28]
    ZHU G P, NGUYEN N T, RAMANUJAN R V, et al. Nonlinear deformation of a ferrofluid droplet in a uniform magnetic field[J]. Langmuir, 2011, 27(24): 14834–14841. doi: 10.1021/la203931q
    [29]
    SOUZA P J Jr, LIRA S H A, DE OLIVEIRA I N. Wetting dynamics of ferrofluids on substrates with different hydrophilicity behaviors[J]. Journal of Magnetism and Magnetic Materials, 2019, 483: 129–135. doi: 10.1016/j.jmmm.2019.03.069
    [30]
    BERIM G O, RUCKENSTEIN E. Nanodrop of an Ising magnetic fluid on a solid surface[J]. Langmuir, 2011, 27(14): 8753–8760. doi: 10.1021/la2011919
    [31]
    TENNETI S, SUBRAMANIAN S G, CHAKRABORTY M, et al. Magnetowetting of ferrofluidic thin liquid films[J]. Scientific Reports, 2017, 7: 44738. doi: 10.1038/srep44738
    [32]
    AHMED A, FLECK B A, WAGHMARE P R. Maximum spreading of a ferrofluid droplet under the effect of magnetic field[J]. Physics of Fluids, 2018, 30(7): 077102. doi: 10.1063/1.5032113
    [33]
    AHMED A, QURESHI A J, FLECK B A, et al. Effects of magnetic field on the spreading dynamics of an impinging ferrofluid droplet[J]. Journal of Colloid and Interface Science, 2018, 532: 309–320. doi: 10.1016/j.jcis.2018.07.110
    [34]
    BERTHIER J, SILBERZAN P. Microfluidics for biotechnology[M]. 2nd ed. Boston: Artech House, 2010
    [35]
    ZIMMELS Y. The Bernoulli equation for fluids in electromagnetic and interfacial systems[J]. Journal of Colloid and Interface Science, 1988, 125(2): 399–419. doi: 10.1016/0021-9797(88)90004-5
  • Related Articles

    [1]WANG Zirui, ZHANG Ke, DUAN Jingtian, WU Junmei, LAN Zhike. Application of MRV in experimental investigation of flow field characteristics in a coolant channel within a fuel assembly[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230167
    [2]YU Xinning, JIANG Xintong, ZHANG Jun, ZHOU Tingbo, NI Zhangsong. Application of typical magnetic suspension system in maglev flight wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 27-36. DOI: 10.11729/syltlx20220149
    [3]DUAN Jingtian, WANG Zirui, ZHANG Ke, LEI Jiang, WU Junmei. Investigation on full field three-dimensional flow in a multi-pass channel based on Magnetic Resonance Velocimetry (MRV)[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230015
    [4]QIU Yue, YANG Yifan, YU Dachuan, ZHU Chunling. Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220085
    [5]CHEN Wei, WANG Lei, WU Yue. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220099
    [6]YI Wentong, ZHU Yiwen, LIU Wenzhong. Frontiers and developments of ultra-high time and space resolution magnetic nanometer temperature measurement[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 1-8. DOI: 10.11729/syltlx20210107
    [7]Kang Hongming, Huo Guo, Chen Fuzheng, Liu Xiaolin. Design and application of digital valve in gas supply control system for wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 88-92. DOI: 10.11729/syltlx20160086
    [8]Di Qingfeng, Hua Shuai, Gu Chunyuan, Ye Feng, Pang Dongshan, Jiang Fan, Yang Peiqiang. Study of micro flow visualization with nuclear magnetic resonance in core[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 98-103. DOI: 10.11729/syltlx20150107
    [9]WANG Hua-feng, CHENG Wan, LI Zhan-hua. The enhancing effect of magnetic nano-particles on the liquid's mixing in microchannels[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 54-58. DOI: 10.3969/j.issn.1672-9897.2007.01.011
    [10]DU Bai-he, LI Lin-cun, MA Qiang, CHEN Quan, ZHAO Yu-han, XIA Wei-dong. Experimental study on arc movement images effected by magnetic diffusing[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 47-50. DOI: 10.3969/j.issn.1672-9897.2005.03.010

Catalog

    Article Metrics

    Article views (510) PDF downloads (71) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close