Turn off MathJax
Article Contents
WANG Y, GU Y S, ZHOU Y H, et al. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230120
Citation: WANG Y, GU Y S, ZHOU Y H, et al. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230120

The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle

doi: 10.11729/syltlx20230120
  • Received Date: 2023-09-18
  • Accepted Date: 2023-11-16
  • Rev Recd Date: 2023-10-21
  • Available Online: 2023-12-06
  • The thrust vectoring technology is the key technology of high-performance aircraft, which can be divided into the mechanical and the fluidic thrust vectoring technology. The fluidic thrust vectoring technology has advantages of simple structure, fast deflection response and low energy consumption, so it has been widely studied. However the problems of jump and nonlinearity of the control law exist in the current rectangular fluidic thrust vectoring nozzles. Meanwhile the maximum deflection angle is small, which seriously limits the engineering application of this technology. A new type of the rectangular multi-wall passive thrust vectoring nozzle is developed in this paper. In order to figure out whether this new nozzle can realize the vector control of the jet with high linearity and larger deflection angle, two control strategies of the multi-section wall under multi-wall passive secondary flow and the variation of the initial passive secondary flow rate are employed. The characteristics of the dynamics and flow field of the jet are studied by means of experiment and numerical simulation. The results show that these control methods improve the linearity of the control law of the force vector angle, and the effective deflection force vector angle is increased. The linearity of the control law increases from 62% to 90.8%, and the maximum deflection force vector angle increases from 18° to 22°. When the initial inlet and outlet area ratio of the passive secondary flow is 1.16, the line-arity is further increased to 94.9%. It is found that there is no obvious separation bubble structure near the wall of the nozzle during jet deflection, which preliminarily explains the principle of the linear continuous control law of the nozzle.
  • loading
  • [1]
    賈東兵. 关于推力矢量控制技术的探讨[J]. 航空动力, 2018(3): 25–27.

    JIA D B. Discussion on thrust vector control technologies[J]. Aerospace Power, 2018(3): 25–27.
    [2]
    WILSON E A, ADLER D, BAR-YOSEPH P Z. Geometric evaluation of axisymmetric thrust-vectoring nozzles for aerodynamic performance predictions[J]. Journal of Propulsion and Power, 2002, 18(3): 712–716. doi: 10.2514/2.5988
    [3]
    CAPONE F, SMERECZNIAK P, SPETNAGEL D, et al. Comparative investigation of multiplane thrust vectoring nozzles[C]//Proc of the Proceedings of the 28th Joint Propulsion Conference and Exhibit. 1992. .
    [4]
    柳亚冰, 符大伟, 蔡常鹏, 等. 轴对称矢量喷管空间运动学建模仿真[J]. 航空发动机, 2020, 46(6): 34–40.

    LIU Y B, FU D W, CAI C P, et al. Modeling and simulation of spatial kinematics of axisymmetric vectoring nozzle[J]. Aeroengine, 2020, 46(6): 34–40.
    [5]
    CHEPKIN V. New generation of Russian aircraft engines conversion; future goals[C]//Proc of the International Symposium on Air Breathing Engines. 1999. .
    [6]
    冯瑞强, 李晓明, 王宇天. 几何偏转角度对矢量喷管推力特性的影响[J]. 兵器装备工程学报, 2022, 43(5): 158–164. doi: 10.11809/bqzbgcxb2022.05.026

    FENG R Q, LI X M, WANG Y T. Influence of geometrical deflection angle on thrust characteristics of vector nozzle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 158–164. doi: 10.11809/bqzbgcxb2022.05.026
    [7]
    王朝阳. 基于并联机构全向轴对称矢量喷管研究[D]. 秦皇岛: 燕山大学, 2022. doi: 10.27440/d.cnki.gysdu.2022.000298.

    WANG Z Y. Research on omnidirectional axisymmetric vector nozzle based on parallel mechanism[D]. Qinhuangdao: Yanshan University, 2022.
    [8]
    肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8–15.

    XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8–15.
    [9]
    史经纬, 王占学, 梁爽. 激波矢量控制喷管技术分析[J]. 航空动力, 2023(2): 71–74.

    SHI J W, WANG Z X, LIANG S. Technical analysis of shock vector control nozzle[J]. Aerospace Power, 2023(2): 71–74.
    [10]
    栾思琦. 发动机激波诱导矢量喷管的流动特性研究[D]. 沈阳: 沈阳航空航天大学, 2020. doi: 10.27324/d.cnki.gshkc.2020.000039.

    LUAN S Q. Study on flow characteristics of shock induced vectoring nozzle for engine[D]. Shenyang: Shenyang Aerospace University, 2020.
    [11]
    ZHANG L T, SU M Y, FENG Z L, et al. Numerical study on the shock vector control performance in a de Laval nozzle with single or dual injection ports[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3001–3016. doi: 10.1007/s12206-022-0532-9
    [12]
    徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67–70.

    XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67–70.
    [13]
    王建明, 刘晓东, 夏瑄泽, 等. 一种新型双射流双喉道控制矢量喷管的数值模拟[J]. 沈阳航空航天大学学报, 2022, 39(3): 19–26.

    WANG J M, LIU X D, XIA X Z, et al. Numerical simulation of a novel dual-injection dual-throat vectoring nozzle[J]. Journal of Shenyang Aerospace Ace University, 2022, 39(3): 19–26.
    [14]
    宋海华. 双喉道推力矢量喷管推力稳定性研究[D]. 北京: 北京交通大学, 2022. doi: 10.26944/d.cnki.gbfju.2022.000568.

    SONG H H. Study on thrust stability of double throat thrust vector nozzle[D]. Beijing: Beijing Jiaotong University, 2022.
    [15]
    ALVI F S, STRYKOWSKI P J. Forward flight effects on counterflow thrust vector control of a supersonic jet[J]. AIAA Journal, 1999, 37: 279–281. doi: 10.2514/3.14162
    [16]
    刘赵淼, 徐迎丽, 申峰. 亚声速条件下外形参数对逆流矢量喷管性能影响的模拟研究[J]. 推进技术, 2014, 35(3): 305–313. doi: 10.13675/j.cnki.tjjs.2014.03.025

    LIU Z M, XU Y L, SHEN F. Effects of geometric parameters on performance of counter-flow vectoring nozzle in subsonic conditions[J]. Journal of Propulsion Technology, 2014, 35(3): 305–313. doi: 10.13675/j.cnki.tjjs.2014.03.025
    [17]
    史经纬, 王占学, 张晓博, 等. 逆流推力矢量喷管主流附体及控制方法研究[J]. 空气动力学学报, 2013, 31(6): 723–726,738.

    SHI J W, WANG Z X, ZHANG X B, et al. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. Acta Aerodynamica Sinica, 2013, 31(6): 723–726,738.
    [18]
    吴渴欣. 同向流动和逆向流动的推力矢量控制[D]. 杭州: 浙江理工大学, 2018.

    WU K X. Thrust vector control based on co-and-counter flow[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
    [19]
    SUNG H G, HEO J Y. Fluidic thrust vector control of supersonic jet using coflow injection[J]. Journal of Propulsion and Power, 2012, 28(4): 858–861. doi: 10.2514/1.b34266
    [20]
    肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974.

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974.
    [21]
    顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学, 2012, 27(1): 87–92.

    GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics, 2012, 27(1): 87–92.
    [22]
    韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.

    HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [23]
    温俊杰. 无源受控扰动下Coanda附壁射流离壁过程研究[D]. 南京: 南京航空航天大学, 2019. .

    WEN J J. Study on the transient separation process of coanda wall-attached jet under passive controlled excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [24]
    龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609
    [25]
    冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学.

    FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics.
    [26]
    曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202

    CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202
    [27]
    SHI N X, GU Y S, ZHOU Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. doi: 10.1063/5.0101994
    [28]
    PANITZ T, WASAN D T. Flow attachment to solid surfaces: the Coanda effect[J]. AIChE Journal, 1972, 18(1): 51–57. doi: 10.1002/aic.690180111
    [29]
    PRAMANIK S, DAS M K. Numerical study of turbulent wall jet over multiple-inclined flat surface[J]. Computers & Fluids, 2014, 95: 132–158. doi: 10.1016/j.compfluid.2014.01.020
    [30]
    王磊. 环量控制机翼气动特性及机理研究[D]. 成都: 西华大学, 2020.

    WANG L. Research on aerodynamic characteristics and mechanism of circulation control wing[D]. Chengdu: Xihua University, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(5)

    Article Metrics

    Article views (80) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return