Citation: | WANG Y, GU Y S, ZHOU Y H, et al. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230120. |
[1] |
賈東兵. 关于推力矢量控制技术的探讨[J]. 航空动力, 2018(3): 25–27.
JIA D B. Discussion on thrust vector control technologies[J]. Aerospace Power, 2018(3): 25–27.
|
[2] |
WILSON E A, ADLER D, BAR-YOSEPH P Z. Geometric evaluation of axisymmetric thrust-vectoring nozzles for aerodynamic performance predictions[J]. Journal of Propulsion and Power, 2002, 18(3): 712–716. doi: 10.2514/2.5988
|
[3] |
CAPONE F, SMERECZNIAK P, SPETNAGEL D, et al. Comparative investigation of multiplane thrust vectoring nozzles[C]//Proc of the Proceedings of the 28th Joint Propulsion Conference and Exhibit. 1992. .
|
[4] |
柳亚冰, 符大伟, 蔡常鹏, 等. 轴对称矢量喷管空间运动学建模仿真[J]. 航空发动机, 2020, 46(6): 34–40.
LIU Y B, FU D W, CAI C P, et al. Modeling and simulation of spatial kinematics of axisymmetric vectoring nozzle[J]. Aeroengine, 2020, 46(6): 34–40.
|
[5] |
CHEPKIN V. New generation of Russian aircraft engines conversion; future goals[C]//Proc of the International Symposium on Air Breathing Engines. 1999. .
|
[6] |
冯瑞强, 李晓明, 王宇天. 几何偏转角度对矢量喷管推力特性的影响[J]. 兵器装备工程学报, 2022, 43(5): 158–164. DOI: 10.11809/bqzbgcxb2022.05.026
FENG R Q, LI X M, WANG Y T. Influence of geometrical deflection angle on thrust characteristics of vector nozzle[J]. Journal of Ordnance Equipment Engineering, 2022, 43(5): 158–164. doi: 10.11809/bqzbgcxb2022.05.026
|
[7] |
王朝阳. 基于并联机构全向轴对称矢量喷管研究[D]. 秦皇岛: 燕山大学, 2022. doi: 10.27440/d.cnki.gysdu.2022.000298.
WANG Z Y. Research on omnidirectional axisymmetric vector nozzle based on parallel mechanism[D]. Qinhuangdao: Yanshan University, 2022.
|
[8] |
肖中云, 江雄, 牟斌, 等. 流体推力矢量技术研究综述[J]. 实验流体力学, 2017, 31(4): 8–15.
XIAO Z Y, JIANG X, MOU B, et al. Advances influidic thrust vectoring technique research[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 8–15.
|
[9] |
史经纬, 王占学, 梁爽. 激波矢量控制喷管技术分析[J]. 航空动力, 2023(2): 71–74.
SHI J W, WANG Z X, LIANG S. Technical analysis of shock vector control nozzle[J]. Aerospace Power, 2023(2): 71–74.
|
[10] |
栾思琦. 发动机激波诱导矢量喷管的流动特性研究[D]. 沈阳: 沈阳航空航天大学, 2020. doi: 10.27324/d.cnki.gshkc.2020.000039.
LUAN S Q. Study on flow characteristics of shock induced vectoring nozzle for engine[D]. Shenyang: Shenyang Aerospace University, 2020.
|
[11] |
ZHANG L T, SU M Y, FENG Z L, et al. Numerical study on the shock vector control performance in a de Laval nozzle with single or dual injection ports[J]. Journal of Mechanical Science and Technology, 2022, 36(6): 3001–3016. doi: 10.1007/s12206-022-0532-9
|
[12] |
徐惊雷, 黄帅, 潘睿丰. 双喉道气动推力矢量喷管的现状及将来[J]. 航空动力, 2023(2): 67–70.
XU J L, HUANG S, PAN R F. Research status and development trend of dual throat fluidic thrust vectoring nozzle[J]. Aerospace Power, 2023(2): 67–70.
|
[13] |
王建明, 刘晓东, 夏瑄泽, 等. 一种新型双射流双喉道控制矢量喷管的数值模拟[J]. 沈阳航空航天大学学报, 2022, 39(3): 19–26.
WANG J M, LIU X D, XIA X Z, et al. Numerical simulation of a novel dual-injection dual-throat vectoring nozzle[J]. Journal of Shenyang Aerospace Ace University, 2022, 39(3): 19–26.
|
[14] |
宋海华. 双喉道推力矢量喷管推力稳定性研究[D]. 北京: 北京交通大学, 2022. doi: 10.26944/d.cnki.gbfju.2022.000568.
SONG H H. Study on thrust stability of double throat thrust vector nozzle[D]. Beijing: Beijing Jiaotong University, 2022.
|
[15] |
ALVI F S, STRYKOWSKI P J. Forward flight effects on counterflow thrust vector control of a supersonic jet[J]. AIAA Journal, 1999, 37: 279–281. doi: 10.2514/3.14162
|
[16] |
刘赵淼, 徐迎丽, 申峰. 亚声速条件下外形参数对逆流矢量喷管性能影响的模拟研究[J]. 推进技术, 2014, 35(3): 305–313. DOI: 10.13675/j.cnki.tjjs.2014.03.025
LIU Z M, XU Y L, SHEN F. Effects of geometric parameters on performance of counter-flow vectoring nozzle in subsonic conditions[J]. Journal of Propulsion Technology, 2014, 35(3): 305–313. doi: 10.13675/j.cnki.tjjs.2014.03.025
|
[17] |
史经纬, 王占学, 张晓博, 等. 逆流推力矢量喷管主流附体及控制方法研究[J]. 空气动力学学报, 2013, 31(6): 723–726,738.
SHI J W, WANG Z X, ZHANG X B, et al. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. Acta Aerodynamica Sinica, 2013, 31(6): 723–726,738.
|
[18] |
吴渴欣. 同向流动和逆向流动的推力矢量控制[D]. 杭州: 浙江理工大学, 2018.
WU K X. Thrust vector control based on co-and-counter flow[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
|
[19] |
SUNG H G, HEO J Y. Fluidic thrust vector control of supersonic jet using coflow injection[J]. Journal of Propulsion and Power, 2012, 28(4): 858–861. doi: 10.2514/1.b34266
|
[20] |
肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974.
XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974.
|
[21] |
顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学, 2012, 27(1): 87–92.
GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics, 2012, 27(1): 87–92.
|
[22] |
韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.
HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
|
[23] |
温俊杰. 无源受控扰动下Coanda附壁射流离壁过程研究[D]. 南京: 南京航空航天大学, 2019. .
WEN J J. Study on the transient separation process of coanda wall-attached jet under passive controlled excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
|
[24] |
龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. DOI: 10.7527/S1000-6893.2019.23609
GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609
|
[25] |
冯潮, 顾蕴松, 方瑞山, 等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学.
FENG C, GU Y S, FANG R S, et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics.
|
[26] |
曹永飞, 顾蕴松, 韩杰星. 流体推力矢量技术验证机研制及飞行试验研究[J]. 空气动力学学报, 2019, 37(4): 593–599. DOI: 10.7638/kqdlxxb-2017.0202
CAO Y F, GU Y S, HAN J X. Development and flight testing of a fluidic thrust vectoring demonstrator[J]. Acta Aerodynamica Sinica, 2019, 37(4): 593–599. doi: 10.7638/kqdlxxb-2017.0202
|
[27] |
SHI N X, GU Y S, ZHOU Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. doi: 10.1063/5.0101994
|
[28] |
PANITZ T, WASAN D T. Flow attachment to solid surfaces: the Coanda effect[J]. AIChE Journal, 1972, 18(1): 51–57. doi: 10.1002/aic.690180111
|
[29] |
PRAMANIK S, DAS M K. Numerical study of turbulent wall jet over multiple-inclined flat surface[J]. Computers & Fluids, 2014, 95: 132–158. doi: 10.1016/j.compfluid.2014.01.020
|
[30] |
王磊. 环量控制机翼气动特性及机理研究[D]. 成都: 西华大学, 2020.
WANG L. Research on aerodynamic characteristics and mechanism of circulation control wing[D]. Chengdu: Xihua University, 2020.
|