Citation: | ZENG H, WEN P, YANG G M, et al. Absorption/emission spectra diagnosis in ground-based experimental simulation for Mars entry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220101. |
Simulation of the aerothermal environment for Mars entry by the arc-heated plasma wind tunnel is a key to develop the thermal protection system (TPS), since the thermal environment for Mars entry is very different from that of earth reentry. In this study, in-situ quantitative measurements of the radiation characteristics of CO2 plasma and the flow parameters of the simulating freestream for mars entry were carried out by using emission spectroscopy and mid-infrared quantum cascade laser absorption spectroscopy. The electron temperature of the CO2 plasma in the arc heater and the static temperature and CO concentration in the freestream were obtained. The emission spectroscopy and laser absorption spectroscopy measurements show that the arc heater has good stability for long-term operation and a capability for repeatable simulation of the flow parameters. The developed spectral diagnostic technology in this study provides an effective measurement method for studying the flow characteristics of the Mars entry aerothermal environment.
[1] |
唐伟, 杨肖峰, 桂业伟, 等. 火星进入器高超声速气动力/热研究综述[J]. 宇航学报, 2017, 38(3): 230–239. DOI: 10.3873/j.issn.1000-1328.2017.03.002
TANG W, YANG X F, GUI Y W, et al. Review of hypersonic aerodynamics and aerothermodynamics for Mars entries[J]. Journal of Astronautics, 2017, 38(3): 230–239. doi: 10.3873/j.issn.1000-1328.2017.03.002
|
[2] |
苗文博, 吕俊明, 程晓丽, 等. 火星进入热环境预测的热力学模型数值分析[J]. 计算物理, 2015, 32(4): 410–415.
MIAO W B, LV J M, CHENG X L, et al. Numerical analysis of thermodynamics models for Mars entry aero-heating prediction[J]. Chinese Journal of Computational Physics, 2015, 32(4): 410–415.
|
[3] |
VACHER D, DA SILVA M L, ANDRÉ P, et al. Radiation from an equilibrium CO2–N2 plasma in the [250–850 nm] spectral region: I. Experiment[J]. Plasma Sources Science and Technology, 2008, 17: 035012. doi: 10.1088/0963-0252/17/3/035012
|
[4] |
WEISBERGER J M, DeSJARDIN P, MaCLEAN M G, et al. Near-surface CO2 tunable diode laser absorption spectroscopy concentration measurements in the LENS-XX expansion tunnel facility[C]//Proc of the 54th AIAA Aero-space Sciences Meeting. 2016: 0246. doi: 10.2514/6.2016-0246
|
[5] |
TREATY N A. Assessment of aerothermodynamic flight prediction tools through ground and flight experimentation[R]. RTO Technical Report , TR-AVT-136, 2011.
|
[6] |
DANEHY P M, WEISBERGER J, JOHANSEN C, et al. Non-intrusive measurement techniques for flow characteri-zation of hypersonic wind tunnels[R]. NASA Report, No. NF1676L-31725, 2018.
|
[7] |
DANEHY P M, BATHEL B F, JOHANSEN C T, et al. Spectroscopic measurement techniques for aerospace flows[R]. NASA Report, No. NF1676L-18752, 2014.
|
[8] |
PAGE W A, ARNOLD J O. Shock layer radiation of blunt bodies at reentry velocities[R]. NASA TR R-193, 1964.
|
[9] |
WINTER M W, TERRAZAS-SALINAS I, HUI F C L, et al. Measured radiation heat flux to a probe in a NASA Ames arc jet[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4): 1112–1126. doi: 10.2514/1.T5675
|
[10] |
CHEN S Y, BOYD I D, MARTIN N C, et al. Modeling of emission spectra in nonequilibrium plasmas for testing pyrolyzing ablators[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(4): 907–916. doi: 10.2514/1.T5615
|
[11] |
NATIONS M. Laser-based diagnostics of electronically excited oxygen atoms at extreme temperatures[D]. Palo Alto, California: Stanford University, 2016.
|
[12] |
LIN X, YU X L, LI F, et al. CO concentration and temperature measurements in a shock tube for Martian mixtures by coupling OES and TDLAS[J]. Applied Physics B, 2013, 110(3): 401–409. doi: 10.1007/s00340-012-5269-1
|
[13] |
LIN X, CHEN L Z, LI J P, et al. Experimental and numerical study of carbon-dioxide dissociation for Mars atmospheric entry[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(2): 503–513. doi: 10.2514/1.t5152
|
[14] |
JELLOIAN C, BENDANA F A, WEI C Y, et al. Simultaneous vibrational, rotational, and translational thermometry based on laser absorption of CO in shock-induced non-equilibrium[C]//Proc of the AIAA Scitech 2021 Forum. 2021: 0448. doi: 10.2514/6.2021-0448
|
[15] |
WELZEL S, HEMPEL F, HÜBNER M, et al. Quantum cascade laser absorption spectroscopy as a plasma diagnostic tool: an overview[J]. Sensors, 2010, 10(7): 6861–6900. doi: 10.3390/s100706861
|
[16] |
GORDON I E, ROTHMAN L S, Hill C, et al. The HITRAN2020 molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 203: 3–69. doi: 10.1016/j.jqsrt.2017.06.038
|
[17] |
曾徽, 欧东斌. 基于Ar发射光谱的感应等离子体球化高温流场温度测量研究[J]. 光谱学与光谱分析, 2020, 40(6): 1685–1689. DOI: 10.3964/j.issn.1000-0593(2020)06-1685-05
ZENG H, OU D B. Temperature measurements of inductively coupled plasma spheroidization by using argon emission spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(6): 1685–1689. doi: 10.3964/j.issn.1000-0593(2020)06-1685-05
|