Turn off MathJax
Article Contents
LIU X L,LI W F,XU D C,et al. Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-11. doi: 10.11729/syltlx20220062
Citation: LIU X L,LI W F,XU D C,et al. Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-11. doi: 10.11729/syltlx20220062

Experimental investigation on anti-icing mechanism and characteristics of superhydrophobic electrothermal coupled surface

doi: 10.11729/syltlx20220062
  • Received Date: 2022-07-04
  • Accepted Date: 2022-10-13
  • Rev Recd Date: 2022-10-07
  • Available Online: 2022-11-08
  • As a novel anti-icing technology, superhydrophobic electrothermal coupled surface anti-icing possesses an excel-lent anti-icing efficiency with low energy consumption. Based on the water droplet impact behaviors and the wetting characteristics of the superhydrophobic surface, a prediction model of the heat flow density of superhydrophobic electrothermal coupled surface anti-icing is developed according to the thermal balance theory of the icing surface. The experimental analysis of the superhydrophobic electrothermal coupled surface anti-icing is carried out in a low-speed icing wind tunnel. The results show that the difference between the theoretical anti-icing heat flux and the experimental results is less than 6%, which verifies the prediction model. The analysis of the experimental results and energy consumption shows that the superhydrophobic electrothermal coupled surface anti-icing effectively reduces the energy consumption compared with the electrothermal method. With the freestream velocity of 10 m/s, liquid water content of 1 g/m3, mean volume diameter of 65 μm, and temperature of −15 ℃, the superhydrophobic coating can effectively prevent the formation of backwater due to its wetting property. For dry and wet surface anti-icing, the superhydrophobic electrothermal coupled surface anti-icing method reduces the energy consumption by about 43% and 33% respectively compared with the electrothermal method.
  • loading
  • [1]
    卜雪琴,彭珑,林贵平,等. 热气防冰系统内表面弦向传热性能衰减规律[J]. 北京航空航天大学学报,2016,42(1):72-78. doi: 10.13700/j.bh.1001-5965.2015.0065

    BU X Q,PENG L,LIN G P,et al. Chordwise attenuation of heat transfer performance on inner surface of hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(1):72-78. doi: 10.13700/j.bh.1001-5965.2015.0065
    [2]
    郁嘉,赵柏阳,卜雪琴,等. 某型飞机发动机短舱热气防冰系统性能数值模拟[J]. 空气动力学学报,2016,34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212

    YU J,ZHAO B Y,BU X Q,et al. Numerical simulation of the performance of an engine nacelle hot-air anti-icing system[J]. Acta Aerodynamica Sinica,2016,34(3):302-307. doi: 10.7638/kqdlxxb-2015.0212
    [3]
    卜雪琴,林贵平,郁嘉. 机翼电加热防冰表面内外传热的耦合计算[J]. 航空动力学报,2010,25(7):1491-1496. doi: 10.13224/j.cnki.jasp.2010.07.030

    BU X Q,LIN G P,YU J. Coupled heat transfer calculation on an airfoil electrothermal anti-icing surface[J]. Journal of Aerospace Power,2010,25(7):1491-1496. doi: 10.13224/j.cnki.jasp.2010.07.030
    [4]
    胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术,2016,27(7):8-11.

    HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/ de-icing[J]. Aeronautical Science & Technology,2016,27(7):8-11.
    [5]
    马莉娅,熊联友,刘立强,等. 用于碳纤维复合材料的电热除冰技术实验研究[J]. 航空学报,2012,33(1):54-61.

    MA L Y,XIONG L Y,LIU L Q,et al. Experimental study on electro-thermal deicing technique for carbon fiber composite[J]. Acta Aeronautica et Astronautica Sinica,2012,33(1):54-61.
    [6]
    JIANG H,WANG H T,LIU G,et al. Light-weight, flexible, low-voltage electro-thermal film using graphite nanoplatelets for wearable/smart electronics and deicing devices[J]. Journal of Alloys and Compounds,2017,699:1049-1056. doi: 10.1016/j.jallcom.2016.12.435
    [7]
    POURBAGIAN M,HABASHI W G. Surrogate-based optimization of electrothermal wing anti-icing systems[J]. Journal of Aircraft,2013,50(5):1555-1563. doi: 10.2514/1.C032072
    [8]
    MOHSENI M,AMIRFAZLI A. A novel electro-thermal anti-icing system for fiber-reinforced polymer composite airfoils[J]. Cold Regions Science and Technology,2013,87:47-58. doi: 10.1016/j.coldregions.2012.12.003
    [9]
    CORNELL J S,PILLARD D A,HERNANDEZ M T. Comparative measures of the toxicity of component chemicals in aircraft deicing fluid[J]. Environmental Toxicology and Chemistry,2000,19(6):1465-1472. doi: 10.1002/etc.5620190601
    [10]
    LOUCHEZ P, BERNARDIN S, LAFORTE J L. Physical properties of aircraft de-icing and anti-icing fluids[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998: 575. doi: 10.2514/6.1998-575
    [11]
    YAKHYA S, MORENCY F. Numerical study of momentum and heat transfer in propylene glycol jets used for aircraft ground deicing[C]//Proc of the 23rd AIAA Computational Fluid Dynamics Conference. 2017: 4504. doi: 10.2514/6.2017-4504
    [12]
    李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界,2012,28(1):26-31. doi: 10.3969/j.issn.1671-8909.2012.01.006

    LI B. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World,2012,28(1):26-31. doi: 10.3969/j.issn.1671-8909.2012.01.006
    [13]
    李清英,白天,朱春玲. 飞机机械除冰系统的研究综述[J]. 飞机设计,2015,35(4):73-77. doi: 10.19555/j.cnki.1673-4599.2015.04.015

    LI Q Y,BAI T,ZHU C L. Research summary of mechnical de-icing systems of aircrafts[J]. Aircraft Design,2015,35(4):73-77. doi: 10.19555/j.cnki.1673-4599.2015.04.015
    [14]
    DRURY M,SZEFI J T,PALACIOS J. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft,2015,54:220-228. doi: 10.2514/1.C033965
    [15]
    SOMMERWERK H, HORST P, BANSMER S. Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel[C]//Proc of the 8th AIAA Atmospheric and Space Environments Conference. 2016: 3441. doi: 10.2514/6.2016-3441
    [16]
    YEONG Y H, LOTH E, SOKHEY J, et al. Ice adhesion strength on hydrophobic and superhydrophobic coatings[C]//Proc of the 6th AIAA Atmospheric and Space Environments Conference. 2014: 2063. doi: 10.2514/6.2014-2063
    [17]
    CAO L L,JONES A K,SIKKA V K,et al. Anti-icing superhydrophobic coatings[J]. Langmuir,2009,25(21):12444-12448. doi: 10.1021/la902882b
    [18]
    KULINICH S A,FARHADI S,NOSE K,et al. superhydrophobic surface: Are they really ice-repellent?[J]. Langmuir,2011,27(1):25-29. doi: 10.1021/la104277q
    [19]
    FARHADI S,FARZANEH M,KULINICH S A. Anti-icing performance of superhydrophobic surfaces[J]. Applied Surface Science,2011,257(14):6264-6269. doi: 10.1016/j.apsusc.2011.02.057
    [20]
    DE PAUW D,DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft,2016,54(2):490-499. doi: 10.2514/1.C033828
    [21]
    彭兰清,卫建勋,陈诺,等. 基于超疏水表层的石墨烯电热除冰实验研究[J]. 科学技术与工程,2021,21(15):6513-6518. doi: 10.3969/j.issn.1671-1815.2021.15.057

    PENG L Q,WEI J X,CHEN N,et al. Experimental study on graphene electrothermal deicing based on superhydrophobic surface[J]. Science Technology and Engineering,2021,21(15):6513-6518. doi: 10.3969/j.issn.1671-1815.2021.15.057
    [22]
    KIMURA S, YAMAGISHI Y, SAKABE A, et al. A new surface coating for prevention of icing on airfoils[R]. SAE Tech-nical Paper, 2007. doi. org/10.4271/2007-01-3315
    [23]
    ZHAO Z H,CHEN H W,LIU X L,et al. Novel sandwich structural electric heating coating for anti-icing/de-icing on complex surfaces[J]. Surface and Coatings Technology,2020,404:126489. doi: 10.1016/j.surfcoat.2020.126489
    [24]
    朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[D]. 西安: 西北工业大学, 2018. DOI: 10.27406/d.cnki.gxbgu.2018.000407

    ZHU B. Low power superhydrophobic electrothermal skin and its anti-icing performance[D]. Xi'an: Northwestern Polytechnical University, 2018.
    [25]
    KOLBAKIR C, HU H Y, LIU Y, et al. A hybrid anti-/ de-icing strategy by combining NS-DBD plasma actuator and superhydrophobic coating for aircraft icing mitigation[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 0050. doi: 10.2514/6.2019-0050
    [26]
    ANTONINI C,INNOCENTI M,HORN T,et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology,2011,67(1-2):58-67. doi: 10.1016/j.coldregions.2011.02.006
    [27]
    HU H Y, AL-MASRI F, HU H. An experimental study on ice accretion and anti-/ de-icing of a pitot tube[C]//Proc of the AIAA SCITECH 2022 Forum. 2022: 1913. doi: 10.2514/6.2022-1913
    [28]
    XUE S J,LIU Y H,WANG Y,et al. Variation in anti-icing power of superhydrophobic electrothermal film under different temperatures and wind speeds[J]. International Journal of Aerospace Engineering,2022,2022:3465428. doi: 10.1155/2022/3465428
    [29]
    朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016.

    ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(3)

    Article Metrics

    Article views (368) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return