Turn off MathJax
Article Contents
LU X T, ZHAO H, SHE W X, et al. Study on MHz high-speed PIV technique[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230144
Citation: LU X T, ZHAO H, SHE W X, et al. Study on MHz high-speed PIV technique[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230144

Study on MHz high-speed PIV technique

doi: 10.11729/syltlx20230144
  • Received Date: 2023-10-31
  • Accepted Date: 2023-12-19
  • Rev Recd Date: 2023-12-12
  • Available Online: 2024-01-09
  • Transonic flows have presented an enduring challenge to experimental research due to their intricate and unsteady flow characteristics. This study investigated the megahertz-frequency Particle Image Velocimetry(MHz–PIV)technique to enhance the resolution of small time-scale flows under the transonic flow conditions. During the measurement, five high-speed cameras alternately and quickly captured images of the same measurement area, and thus obtained ultra-high time resolution particle image data. By employing image processing techniques optical distortion correction and identification of the common area were achieved. The application of the ensemble correlation algorithm, coupled with spectral analysis of the compressible turbulent flow field based on the velocity field, contributed to a comprehensive analysis. The experiment validated the high-frequency sampling capability of MHz–PIV, which significantly reduces the technology’s dependence on camera performance. This approach offers a refined measurement technique with high spatiotemporal resolution for transonic experiments.
  • loading
  • [1]
    ASHOK A, BAILEY S C C, HULTMARK M, et al. Hot-wire spatial resolution effects in measurements of grid-generated turbulence[J]. Experiments in Fluids, 2012, 53(6): 1713–1722. doi: 10.1007/s00348-012-1382-5
    [2]
    HUTCHINS N, MONTY J P, HULTMARK M, et al. A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence[J]. Experiments in Fluids, 2015, 56(1): 1–18. doi: 10.1007/s00348-014-1856-8
    [3]
    BENEDICT L H, NOBACH H, TROPEA C. Estimation of turbulent velocity spectra from laser Doppler data[J]. Measurement Science and Technology, 2000, 11(8): 1089–1104. doi: 10.1088/0957-0233/11/8/301
    [4]
    BROERSEN P M T. Practical aspects of the spectral analysis of irregularly sampled data with time-series models[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1380–1388. doi: 10.1109/TIM.2008.2009201
    [5]
    POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2001, 12(11): 2020–2021. doi: 10.1088/0957-0233/12/11/705
    [6]
    WERNET M P. Temporally resolved PIV for space–time correlations in both cold and hot jet flows[J]. Measurement Science and Technology, 2007, 18(5): 1387–1403. doi: 10.1088/0957-0233/18/5/027
    [7]
    MURPHY M J, ADRIAN R J. PIV space-time resolution of flow behind blast waves[J]. Experiments in Fluids, 2010, 49(1): 193–202. doi: 10.1007/s00348-010-0843-y
    [8]
    THUROW B, JIANG N B, LEMPERT W. Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements[J]. Measurement Science and Technology, 2013, 24(1): 012002. doi: 10.1088/0957-0233/24/1/012002
    [9]
    MILLER J D, MICHAEL J B, SLIPCHENKO M N, et al. Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser[J]. Applied Physics B, 2013, 113(1): 93–97. doi: 10.1007/s00340-013-5665-1
    [10]
    MILLER J D, JIANG N B, SLIPCHENKO M N, et al. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry[J]. Experiments in Fluids, 2016, 57(12): 1–17. doi: 10.1007/s00348-016-2279-5
    [11]
    WAGNER J L, BERESH S J, DEMAURO E P, et al. Pulse-burst PIV measurements of transient phenomena in a shock tube[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
    [12]
    DEMAURO E P, WAGNER J L, BERESH S J, et al. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV[J]. Physical Review Fluids, 2017, 2(6): 064301. doi: 10.1103/physrevfluids.2.064301
    [13]
    BERESH S J, WAGNER J L, CASPER K M, et al. Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity[J]. AIAA Journal, 2017, 55(12): 4203–4218. doi: 10.2514/1.j056106
    [14]
    WAGNER J L, BERESH S J, CASPER K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
    [15]
    VANSTONE L, SALEEM M, SECKIN S, et al. Role of boundary-layer on unsteadiness on a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
    [16]
    BERESH S J, HENFLING J, SPILLERS R. Pulse-burst PIV of the supersonic wake of a wall-mounted hemisphere[C]//Proc of the Proceedings of the 47th AIAA Fluid Dynamics Conference. 2017. .
    [17]
    BROCK B, HAYNES R H, THUROW B S, et al. An examination of MHz rate PIV in a heated supersonic jet[C]//Proceedings of the 52nd Aerospace Sciences Meeting. 2014. .
    [18]
    BERESH S, KEARNEY S, WAGNER J, et al. Pulse-burst PIV in a high-speed wind tunnel[J]. Measurement Science and Technology, 2015, 26(9): 095305. doi: 10.1088/0957-0233/26/9/095305
    [19]
    BERESH S J, HENFLING J F, SPILLERS R W, et al. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements[J]. Measurement Science and Technology, 2018, 29(3): 034011. doi: 10.1088/1361-6501/aa9f79
    [20]
    BERESH S J, SPILLERS R, SOEHNEL M, et al. Extending the frequency limits of “postage-stamp PIV” to MHz rates[C]//Proceedings of the AIAA Scitech 2020 Forum. 2020. .
    [21]
    陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 61-72.

    LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(10): 61-72. doi: 10.1360/SSPMA-2020-0055
    [22]
    ZHU Y D, YUAN H J, LEE C B. Ultrafast tomographic particle image velocimetry investigation on hypersonic boundary layers[J]. Physics of Fluids, 2020, 32(9): 094103. doi: 10.1063/5.0014168
    [23]
    HAN J H, HE L, WU Z B. Experimental investigation on evolution characteristics of high- and low-speed streaks in supersonic turbulent boundary layer[J]. AIP Advances, 2022, 12(11): 115204. doi: 10.1063/5.0121259
    [24]
    冈敦殿, 易仕和, 米琦, 等. 超声速混合层MHz级超高频流动可视化实验[J]. 气体物理, 2022, 7(6): 33–41. doi: 10.19527/j.cnki.2096-1642.0989

    GANG D D, YI S H, MI Q, et al. Experiment on flow visualization of supersonic mixing layer at MHz-level superhigh frequency[J]. Physics of Gases, 2022, 7(6): 33–41. doi: 10.19527/j.cnki.2096-1642.0989
    [25]
    WILLERT C E, GHARIB M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181–193. doi: 10.1007/BF00190388
    [26]
    PEDERSEN M, BENGTSON S H, GADE R, et al. Camera calibration for underwater 3D reconstruction based on ray tracing using Snell's law[C]//Proc of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018: 1491-14917. .
    [27]
    BERESH S J. Denoising 400-kHz “postage-stamp PIV” using uncertainty quantification[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. 2018. .
    [28]
    GAMBA M, CLEMENS N. Requirements, capabilities and accuracy of time-resolved PIV in turbulent reacting flows[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. .
    [29]
    OXLADE A R, VALENTE P C, GANAPATHISUB-RAMANI B, et al. Denoising of time-resolved PIV for accurate measurement of turbulence spectra and reduced error in derivatives[J]. Experiments in Fluids, 2012, 53(5): 1561–1575. doi: 10.1007/s00348-012-1375-4
    [30]
    VÉTEL J, GARON A, PELLETIER D. Denoising methods for time-resolved PIV measurements[J]. Experiments in Fluids, 2011, 51(4): 893–916. doi: 10.1007/s00348-011-1096-0
    [31]
    WIENEKE B. PIV anisotropic denoising using uncertainty quantification[J]. Experiments in Fluids, 2017, 58(8): 1–10. doi: 10.1007/s00348-017-2376-0
    [32]
    MEINHART C D, WERELEY S T, SANTIAGO J G. A PIV algorithm for estimating time-averaged velocity fields[J]. Journal of Fluids Engineering, 2000, 122(2): 285–289. doi: 10.1115/1.483256
    [33]
    DELNOIJ E, WESTERWEEL J, DEEN N G, et al. Ensemble correlation PIV applied to bubble plumes rising in a bubble column[J]. Chemical Engineering Science, 1999, 54(21): 5159–5171. doi: 10.1016/S0009-2509(99)00233-X
    [34]
    OZAWA Y, IBUKI T, NONOMURA T, et al. Single-pixel resolution velocity/convection velocity field of a supersonic jet measured by particle/schlieren image velocimetry[J]. Experiments in Fluids, 2020, 61(6): 1–18. doi: 10.1007/s00348-020-02963-1
    [35]
    WESTERWEEL J, GEELHOED P F, LINDKEN R. Single-pixel resolution ensemble correlation for micro-PIV applications[J]. Experiments in Fluids, 2004, 37(3): 375–384. doi: 10.1007/s00348-004-0826-y
    [36]
    TCHEN C M. On the spectrum of energy in turbulent shear flow[J]. Journal of Research of the National Bureau of Standards, 1953, 50(1): 51–62. doi: 10.6028/jres.050.009
    [37]
    BULL M K. Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research[J]. Journal of Sound and Vibration, 1996, 190(3): 299–315. doi: 10.1006/jsvi.1996.0066
    [38]
    BERESH S J, HENFLING J, SPILLERS R. “postage-stamp PIV: ” small velocity fields at 400 kHz for turbulence spectra measurements[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views (80) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return