Citation: | LU X T, ZHAO H, SHE W X, et al. Study on MHz high-speed PIV technique[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230144. |
[1] |
ASHOK A, BAILEY S C C, HULTMARK M, et al. Hot-wire spatial resolution effects in measurements of grid-generated turbulence[J]. Experiments in Fluids, 2012, 53(6): 1713–1722. doi: 10.1007/s00348-012-1382-5
|
[2] |
HUTCHINS N, MONTY J P, HULTMARK M, et al. A direct measure of the frequency response of hot-wire anemometers: temporal resolution issues in wall-bounded turbulence[J]. Experiments in Fluids, 2015, 56(1): 1–18. doi: 10.1007/s00348-014-1856-8
|
[3] |
BENEDICT L H, NOBACH H, TROPEA C. Estimation of turbulent velocity spectra from laser Doppler data[J]. Measurement Science and Technology, 2000, 11(8): 1089–1104. doi: 10.1088/0957-0233/11/8/301
|
[4] |
BROERSEN P M T. Practical aspects of the spectral analysis of irregularly sampled data with time-series models[J]. IEEE Transactions on Instrumentation and Measurement, 2009, 58(5): 1380–1388. doi: 10.1109/TIM.2008.2009201
|
[5] |
POPE S B. Turbulent flows[J]. Measurement Science and Technology, 2001, 12(11): 2020–2021. doi: 10.1088/0957-0233/12/11/705
|
[6] |
WERNET M P. Temporally resolved PIV for space–time correlations in both cold and hot jet flows[J]. Measurement Science and Technology, 2007, 18(5): 1387–1403. doi: 10.1088/0957-0233/18/5/027
|
[7] |
MURPHY M J, ADRIAN R J. PIV space-time resolution of flow behind blast waves[J]. Experiments in Fluids, 2010, 49(1): 193–202. doi: 10.1007/s00348-010-0843-y
|
[8] |
THUROW B, JIANG N B, LEMPERT W. Review of ultra-high repetition rate laser diagnostics for fluid dynamic measurements[J]. Measurement Science and Technology, 2013, 24(1): 012002. doi: 10.1088/0957-0233/24/1/012002
|
[9] |
MILLER J D, MICHAEL J B, SLIPCHENKO M N, et al. Simultaneous high-speed planar imaging of mixture fraction and velocity using a burst-mode laser[J]. Applied Physics B, 2013, 113(1): 93–97. doi: 10.1007/s00340-013-5665-1
|
[10] |
MILLER J D, JIANG N B, SLIPCHENKO M N, et al. Spatiotemporal analysis of turbulent jets enabled by 100-kHz, 100-ms burst-mode particle image velocimetry[J]. Experiments in Fluids, 2016, 57(12): 1–17. doi: 10.1007/s00348-016-2279-5
|
[11] |
WAGNER J L, BERESH S J, DEMAURO E P, et al. Pulse-burst PIV measurements of transient phenomena in a shock tube[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
|
[12] |
DEMAURO E P, WAGNER J L, BERESH S J, et al. Unsteady drag following shock wave impingement on a dense particle curtain measured using pulse-burst PIV[J]. Physical Review Fluids, 2017, 2(6): 064301. doi: 10.1103/physrevfluids.2.064301
|
[13] |
BERESH S J, WAGNER J L, CASPER K M, et al. Spatial distribution of resonance in the velocity field for transonic flow over a rectangular cavity[J]. AIAA Journal, 2017, 55(12): 4203–4218. doi: 10.2514/1.j056106
|
[14] |
WAGNER J L, BERESH S J, CASPER K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. .
|
[15] |
VANSTONE L, SALEEM M, SECKIN S, et al. Role of boundary-layer on unsteadiness on a Mach 2 swept-ramp shock/boundary-layer interaction using 50 kHz PIV[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
|
[16] |
BERESH S J, HENFLING J, SPILLERS R. Pulse-burst PIV of the supersonic wake of a wall-mounted hemisphere[C]//Proc of the Proceedings of the 47th AIAA Fluid Dynamics Conference. 2017. .
|
[17] |
BROCK B, HAYNES R H, THUROW B S, et al. An examination of MHz rate PIV in a heated supersonic jet[C]//Proceedings of the 52nd Aerospace Sciences Meeting. 2014. .
|
[18] |
BERESH S, KEARNEY S, WAGNER J, et al. Pulse-burst PIV in a high-speed wind tunnel[J]. Measurement Science and Technology, 2015, 26(9): 095305. doi: 10.1088/0957-0233/26/9/095305
|
[19] |
BERESH S J, HENFLING J F, SPILLERS R W, et al. ‘Postage-stamp PIV’: small velocity fields at 400 kHz for turbulence spectra measurements[J]. Measurement Science and Technology, 2018, 29(3): 034011. doi: 10.1088/1361-6501/aa9f79
|
[20] |
BERESH S J, SPILLERS R, SOEHNEL M, et al. Extending the frequency limits of “postage-stamp PIV” to MHz rates[C]//Proceedings of the AIAA Scitech 2020 Forum. 2020. .
|
[21] |
陆小革, 易仕和, 牛海波, 等. 不同入射激波条件下激波与湍流边界层干扰的实验研究[J]. 中国科学: 物理学 力学 天文学, 2020, 50(10): 61-72.
LU X G, YI S H, NIU H B, et al. Experimental study on shock and turbulent boundary layer interactions under different incident shock waves[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(10): 61-72. doi: 10.1360/SSPMA-2020-0055
|
[22] |
ZHU Y D, YUAN H J, LEE C B. Ultrafast tomographic particle image velocimetry investigation on hypersonic boundary layers[J]. Physics of Fluids, 2020, 32(9): 094103. doi: 10.1063/5.0014168
|
[23] |
HAN J H, HE L, WU Z B. Experimental investigation on evolution characteristics of high- and low-speed streaks in supersonic turbulent boundary layer[J]. AIP Advances, 2022, 12(11): 115204. doi: 10.1063/5.0121259
|
[24] |
冈敦殿, 易仕和, 米琦, 等. 超声速混合层MHz级超高频流动可视化实验[J]. 气体物理, 2022, 7(6): 33–41. DOI: 10.19527/j.cnki.2096-1642.0989
GANG D D, YI S H, MI Q, et al. Experiment on flow visualization of supersonic mixing layer at MHz-level superhigh frequency[J]. Physics of Gases, 2022, 7(6): 33–41. doi: 10.19527/j.cnki.2096-1642.0989
|
[25] |
WILLERT C E, GHARIB M. Digital particle image velocimetry[J]. Experiments in Fluids, 1991, 10(4): 181–193. doi: 10.1007/BF00190388
|
[26] |
PEDERSEN M, BENGTSON S H, GADE R, et al. Camera calibration for underwater 3D reconstruction based on ray tracing using Snell's law[C]//Proc of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2018: 1491-14917. .
|
[27] |
BERESH S J. Denoising 400-kHz “postage-stamp PIV” using uncertainty quantification[C]//Proceedings of the 2018 AIAA Aerospace Sciences Meeting. 2018. .
|
[28] |
GAMBA M, CLEMENS N. Requirements, capabilities and accuracy of time-resolved PIV in turbulent reacting flows[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. .
|
[29] |
OXLADE A R, VALENTE P C, GANAPATHISUB-RAMANI B, et al. Denoising of time-resolved PIV for accurate measurement of turbulence spectra and reduced error in derivatives[J]. Experiments in Fluids, 2012, 53(5): 1561–1575. doi: 10.1007/s00348-012-1375-4
|
[30] |
VÉTEL J, GARON A, PELLETIER D. Denoising methods for time-resolved PIV measurements[J]. Experiments in Fluids, 2011, 51(4): 893–916. doi: 10.1007/s00348-011-1096-0
|
[31] |
WIENEKE B. PIV anisotropic denoising using uncertainty quantification[J]. Experiments in Fluids, 2017, 58(8): 1–10. doi: 10.1007/s00348-017-2376-0
|
[32] |
MEINHART C D, WERELEY S T, SANTIAGO J G. A PIV algorithm for estimating time-averaged velocity fields[J]. Journal of Fluids Engineering, 2000, 122(2): 285–289. doi: 10.1115/1.483256
|
[33] |
DELNOIJ E, WESTERWEEL J, DEEN N G, et al. Ensemble correlation PIV applied to bubble plumes rising in a bubble column[J]. Chemical Engineering Science, 1999, 54(21): 5159–5171. doi: 10.1016/S0009-2509(99)00233-X
|
[34] |
OZAWA Y, IBUKI T, NONOMURA T, et al. Single-pixel resolution velocity/convection velocity field of a supersonic jet measured by particle/schlieren image velocimetry[J]. Experiments in Fluids, 2020, 61(6): 1–18. doi: 10.1007/s00348-020-02963-1
|
[35] |
WESTERWEEL J, GEELHOED P F, LINDKEN R. Single-pixel resolution ensemble correlation for micro-PIV applications[J]. Experiments in Fluids, 2004, 37(3): 375–384. doi: 10.1007/s00348-004-0826-y
|
[36] |
TCHEN C M. On the spectrum of energy in turbulent shear flow[J]. Journal of Research of the National Bureau of Standards, 1953, 50(1): 51–62. doi: 10.6028/jres.050.009
|
[37] |
BULL M K. Wall-pressure fluctuations beneath turbulent boundary layers: some reflections on forty years of research[J]. Journal of Sound and Vibration, 1996, 190(3): 299–315. doi: 10.1006/jsvi.1996.0066
|
[38] |
BERESH S J, HENFLING J, SPILLERS R. “postage-stamp PIV: ” small velocity fields at 400 kHz for turbulence spectra measurements[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017. .
|