Citation: | TU G H, WANG A, LIU S Y, et al. Mach 6 boundary layer transition experiment on windward side of a HyTRV model[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240013. |
The study of boundary layer transition (BLT) is extremely important in the design of high-speed vehicles, and it is currently one of the most popular research topics. The experiments for a HyTRV (Hypersonic Transition Research Vehicle) model under Mach 6 are conducted in a wind tunnel. The effect of surface roughness, angle of attack, and unit Reynolds number on the transition of the HyTRV windward is studied using infrared thermography and numerical simulation. The experimental findings of the same model in two wind tunnels are compared. The results reveal that increasing the surface roughness has less effect on the transition position, with roughness states of 1, 3 and 6 μm. Increasing the angle of attack (within the tested range of 0-6 degrees) effectively suppresses crossflow transition while promoting centerline streamwise vortex transition. Moreover, increasing the unit Reynolds number promotes both crossflow and centerline vortex transition, leading to higher transition Reynolds numbers. Notably, the transition position of the same model varies considerably in different wind tunnels. For the same unit Reynolds number, the transition Reynolds number of the wind tunnel with a large nozzle-exit scale is higher than that of the wind tunnel with a small nozzle-exit scale.
[1] |
冯志高, 关成启, 张红文. 高超声速飞行器概论[M]. 北京: 北京理工大学出版社, 2016.
FENG Z G, GUAN C Q, ZHANG H W. An introduction to hypersonic air.
|
[2] |
李锋, 解少飞, 毕志献, 等. 高超声速飞行器中若干气动难题的实验研究[J]. 现代防御技术, 2014, 42(5): 1–7. DOI: 10.3969/j.issn.1009-086x.2014.05.001
LI F, XIE S F, BI Z X, et al. Experimental study of several on aerodynamic problems on hypersonic vehicles[J]. Modern Defence Technology, 2014, 42(5): 1–7. doi: 10.3969/j.issn.1009-086x.2014.05.001
|
[3] |
陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. DOI: 10.7638/kqdlxxb-2017.0030
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030
|
[4] |
陈久芬, 徐洋, 蒋万秋, 等. 升力体外形高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2022, 36(0): 1–9. DOI: 10.11729/syltlx20220030
CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(0): 1–9. doi: 10.11729/syltlx20220030
|
[5] |
段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391–403. DOI: 10.7638/kqdlxxb-2020.0041
DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041
|
[6] |
TU G H, CHEN J Q, YUAN X X, et al. Progress in flight tests of hypersonic boundary layer transition[J]. Acta Mechanica Sinica, 2021, 37(11): 1589–1609. doi: 10.1007/s10409-021-01153-4
|
[7] |
DOLVIN D J. Hypersonic international flight research and experimentation technology development and flight certification strategy [C]//Proc of 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference. 2009. doi: 10.2514/6.2009-7228
|
[8] |
WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview[C]//Proc of the 2018 Fluid Dynamics Conference. 2018: 2892. doi: 10.2514/6.2018-2892
|
[9] |
STETSON K, THOMPSON E, DONALDSON J, et al. Laminar boundary layer stability experiments on a cone at Mach 8. III - Sharp cone at angle of attack[C]//Proc of the 23rd Aerospace Sciences Meeting. 1985: 492. doi: 10.2514/6.1985-492
|
[10] |
MUIR J, TRUJILLO A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[C]//Proc of the 10th Aerospace Sciences Meeting. 1972: 216. doi: 10.2514/6.1972-216
|
[11] |
刘是成, 姜应磊, 董昊. 高超声速圆锥边界层不稳定性及转捩实验研究[J]. 实验流体力学, 2022, 36(2): 122–130. DOI: 10.11729/syltlx20210136
LIU S C, JIANG Y L, DONG H. Experimental study on instability and transition over hypersonic boundary layer on a straight cone[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 122–130. doi: 10.11729/syltlx20210136
|
[12] |
OWEN F K, HORSTMAN C C, STAINBACK P C, et al. Comparison of wind tunnel transition and freestream disturbance measurements[J]. AIAA Journal, 1975, 13(3): 266–269. doi: 10.2514/3.49691
|
[13] |
LAKEBRINK M T, BORG M P. Traveling crossflow wave predictions on the HIFiRE-5 at Mach 6: stability analysis vs. quiet tunnel data[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016: 0356. doi: 10.2514/6.2016-0356
|
[14] |
JULIANO T J, BORG M P, SCHNEIDER S P. Quiet tunnel measurements of HIFiRE-5 boundary-layer transition[J]. AIAA Journal, 2015, 53(4): 832–846. doi: 10.2514/1.J053189
|
[15] |
陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317. DOI: 10.7527/S1000-6893.2020.24317
CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317. doi: 10.7527/S1000-6893.2020.24317
|
[16] |
LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637–1647. doi: 10.1007/s10409-021-01136-5
|
[17] |
万兵兵, 陈曦, 陈坚强, 等. 三维边界层转捩预测HyTEN软件在高超声速典型标模中的应用[J]. 空天技术, 2023(1): 150–158. DOI: 10.16338/j.issn.2097-0714.20220206
WAN B B, CHEN X, CHEN J Q, et al. Applications of HyTEN software for predicting three-dimensional boundary-layer transition in typical hypersonic models[J]. Aerospace Technology, 2023(1): 150–158. doi: 10.16338/j.issn.2097-0714.20220206
|
[18] |
陈曦, 董思卫, 袁先旭, 等. 小攻角升力体边界层全局稳定性分析[C]// 第十一届全国流体力学学术会议论文摘要集. 2020: 50.
|
[19] |
CHEN X, DONG S W, TU G H, et al. Boundary layer transition and linear modal instabilities of hypersonic flow over a lifting body[J]. Journal of Fluid Mechanics, 2022, 938: A8. doi: 10.1017/jfm.2021.1125
|
[20] |
QI H, LI X L, YU C P, et al. Direct numerical simulation of hypersonic boundary layer transition over a lifting-body model HyTRV[J]. Advances in Aerodynamics, 2021, 3(1): 31. doi: 10.1186/s42774-021-00082-x
|
[21] |
XIANG X H, CHEN J Q, YUAN X X, et al. Cross-flow transition model predictions of hypersonic transition research vehicle[J]. Aerospace Science and Technology, 2022, 122: 107327. doi: 10.1016/j.ast.2022.107327
|
[22] |
MEN H Y, LI X L, LIU H W, et al. Direct numerical simulations of hypersonic boundary layer transition over a hypersonic transition research vehicle model lifting body at different angles of attack[J]. Physics of Fluids, 2023, 35(4): 044111. doi: 10.1063/5.0146651
|
[23] |
郑文鹏. HyTRV外形的三维边界层转捩实验研究[D]. 长沙: 国防科技大学, 2021.
ZHENG W P. Experimental study on three-dimensional boundary layer transition of HyTRV[D]. Changsha: National University of Defense Technology, 2021.
|
[24] |
FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43: 79–95. doi: 10.1146/annurev-fluid-122109-160750
|
[25] |
STETSON K F, THOMPSON E R, DONALDSON J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8. I - Sharp cone[C]//Proc of the 16th Fluid and Plasmadynamics Conference. 1983: 1761. doi: 10.2514/6.1983-1761
|
[26] |
BOUNTIN D A, SIDORENKO A A, SHIPLYUK A N. Development of natural disturbances in a hypersonic boundary layer on a sharp cone[J]. Journal of Applied Mechanics and Technical Physics, 2001, 42(1): 57–62. DOI: 10.1023/A: 1018852410488. doi: 10.1023/A:1018852410488
|
[27] |
陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51–60. DOI: 10.11729/syltlx20210054
CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51–60. doi: 10.11729/syltlx20210054
|
[28] |
陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. DOI: 10.11729/syltlx20180172
CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7°half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
|
[29] |
BOYD C, HOWELL A. Numerical investigation of one-dimensional heat-flux calculations[R], 1994.
|
[30] |
JULIANO T J, ADAMCZAK D, KIMMEL R L. HIFiRE-5 flight test heating analysis[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0076. doi: 10.2514/6.2014-0076
|
[31] |
MARVIN J G, AKIN C M. Combined effects of mass addition and nose bluntness on boundary-layer transition[J]. AIAA Journal, 1970, 8(5): 857–863. doi: 10.2514/3.5778
|