Citation: | GUO J T, ZHOU Y H, HU D P, et al. Visualization experiment of wave dynamics in pressure oscillation tube[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(5): 54-64. DOI: 10.11729/syltlx20220039 |
Gas Wave Refrigerator (GWR) is a kind of equipment with strong adaptability to complex working conditions. It has the advantages of high refrigeration efficiency, and can work with liquid. The pressure oscillation tube is the core part of GWR. A visual flow field measurement platform was designed to study the wave motion inside the pressure oscillation tube. The flow field splices and the schlieren technique are used to obtain the density gradient field in the tube, and the results are compared with the theoretical calculation of the two-dimensional Euler equation. The deviation between the experiment and the simulation is 3.2%. Based on the above method, experiments with different pressure ratios and rotational speeds were carried out. The experimental results show that the shock Mach number can be increased by increasing the pressure ratio or speed. When the pressure ratio increases from 1.5 to 3.0, the intensity of the shock wave and expansion wave increases significantly. When the rotational speed increases from 800 r/min to
[1] |
COTTERLAZ-RENNAZ M. Wellhead gas refrigerator field strips condensate[J]. World Oil, 1971, 173(6): 60–61.
|
[2] |
刘伟, 胡大鹏. 气波制冷技术研究现状[J]. 制冷, 2002, 21(4): 19–24. DOI: 10.3969/j.issn.1005-9180.2002.04.005
LIU W, HU D P. The research situation of gas wave refrigeration technology[J]. Refrigeration, 2002, 21(4): 19–24. doi: 10.3969/j.issn.1005-9180.2002.04.005
|
[3] |
HANSON R K, DAVIDSON D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combus-tion Science, 2014, 44: 103–114. doi: 10.1016/j.pecs.2014.05.001
|
[4] |
LIU P Q, WU K H, XU S Y, et al. Influence of non-equilibrium condensation on key parameter of gas wave refrigerator[C]//Proceedings of the 7th International Con-ference on Informatics, Environment, Energy and Applica-tions. 2018. doi: 10.1145/3208854.3208894
|
[5] |
HU D P, LI R F, LIU P Q, et al. The design and influence of port arrangement on an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207–217. doi: 10.1016/j.applthermaleng.2016.06.168
|
[6] |
HU D P, YU Y, LIU P Q. Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2018, 130: 309–318. doi: 10.1016/j.applthermaleng.2017.11.040
|
[7] |
LIU P Q, LI X, LIU X Y, et al. Investigation of the shock wave formation and intensity in wave rotor[J]. Journal of Energy Resources Technology, 2021, 143(11): 111301. doi: 10.1115/1.4049585
|
[8] |
OKAMOTO K, ARAKI M. Shock wave observation in narrow tubes for a parametric study on micro wave rotor design[J]. Journal of Thermal Science, 2008, 17(2): 134–140. doi: 10.1007/s11630-008-0134-6
|
[9] |
OKAMOTO K, NAGASHIMA T. Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2): 292–300. doi: 10.2514/1.18439
|
[10] |
KUREC K, PIECHNA J, GUMOWSKI K. Investigations on unsteady flow within a stationary passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations[J]. Applied Thermal Engineering, 2017, 112: 610–620. doi: 10.1016/j.applthermaleng.2016.10.142
|
[11] |
OZAWA H. Visualization of unsteady boundary-layer transition on shock-tube wall using highly sensitive fast-response TSP[C]//Proc of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2015: 3658. doi: 10.2514/6.2015-3658
|
[12] |
谢爱民, 部绍清, 罗锦阳. 基于光源拼接的大视场聚焦纹影技术初步研究[J]. 实验流体力学, 2018, 32(6): 68–73. DOI: 10.11729/syltlx20180012
XIE A M, BU S Q, LUO J Y. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68–73. doi: 10.11729/syltlx20180012
|
[13] |
CHAN S N, LIU H X, XING F, et al. Wave rotor design method with three steps including experimental valida-tion[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(11): 111201. doi: 10.1115/1.4038815
|
[14] |
郑敏, 张涵信. 无波动、无自由参数的耗散差分格式(NND)在喷流计算中的应用[J]. 空气动力学学报, 1989, 7(3): 273–281.
ZHENG M, ZHANG H X. Application of non-oscillatory and non-free-parameters disslpative finit difference scheme to the calculation of free-jet flows[J]. Acta Aerodynamica Sinica, 1989, 7(3): 273–281.
|
[15] |
HARGATHER M J, SETTLES G S. A comparison of three quantitative schlieren techniques[J]. Optics and Lasers in Engineering, 2012, 50(1): 8–17. doi: 10.1016/j.optlaseng.2011.05.012
|
[16] |
SKOTAK M, ALAY E, CHANDRA N. On the accurate determination of shock wave time-pressure profile in the experimental models of blast-induced neurotrauma[J]. Frontiers in Neurology, 2018, 9: 52. doi: 10.3389/fneur.2018.00052
|
[17] |
张连玉. 爆炸气体动力学基础[M]. 北京: 北京工业学院出版社, 1987.
|
[18] |
于洋. 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018.
YU Y. Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018.
|
[1] | DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052 |
[2] | ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196 |
[3] | Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036 |
[4] | Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037 |
[5] | Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072 |
[6] | Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086 |
[7] | Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181 |
[8] | Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084 |
[9] | Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088 |
[10] | Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023 |
1. |
韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
![]() | |
2. |
白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
![]() | |
3. |
王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
![]() | |
4. |
于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
![]() | |
5. |
杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
![]() | |
6. |
刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
![]() | |
7. |
刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
![]() | |
8. |
杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
![]() | |
9. |
韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
![]() | |
10. |
张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
![]() | |
11. |
白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
![]() | |
12. |
杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
![]() | |
13. |
沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
![]() | |
14. |
温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 .
![]() | |
15. |
任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
![]() | |
16. |
李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
![]() | |
17. |
马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 .
![]() | |
31. |
杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .
![]() |