Turn off MathJax
Article Contents
SUN Y C, CHENG P, YU J H. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20200140
Citation: SUN Y C, CHENG P, YU J H. Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20200140

Aeroelastic correction for nonlinear aerodynamic data in wind tunnel tests

doi: 10.11729/syltlx20200140
  • Received Date: 2020-11-10
  • Accepted Date: 2020-12-04
  • Rev Recd Date: 2020-11-28
  • Available Online: 2023-10-18
  • A correction method for model deformation effects in wind tunnel tests is developed based on NASTRAN static aeroelastic analysis integrated with CFD data. Flexible To Rigid Ratio (FTR) of longitudinal aerodynamic derivatives for different angles of attack are calculated by NASTRAN with CFD correction, which is used to obtain aerodynamic characteristics of the undeformed model. Corrected aerodynamic characteristics of a high-aspect-ratio wingbody model under different circumstances of Mach number and dynamic pressure suggest that the proposed method largely improves the correction in the nonlinear part of CL and Cm curve. A minor discrepancy exists between corrected data and extrapolated results at different dynamic pressures, which is at most 0.015 for CL and 0.005 for Cm respectively. Moreover, the method is robust enough to gain accurate corrected results under different circumstances and efficient enough for large scale application in aircraft design.
  • loading
  • [1]
    KEYE S, RUDNIK R. Aero-elastic simulation of DLR’s F6 transport aircraft configuration and comparison to experimental data[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 580. doi: 10.2514/6.2009-580
    [2]
    刘大伟, 熊贵天, 刘洋, 等. 宽体客机高速风洞试验数据修正方法[J]. 航空学报, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205

    LIU D W, XIONG G T, LIU Y, et al. Method of test data correction for wide-body aircraft in high speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2): 16–31. doi: 10.7527/S1000-6893.2018.22205
    [3]
    BENEDICT K A, HEDGES L, ROBINSON A, et al. Inclusion of aeroelastic twist into the CFD analysis of the twin-engine NASA common research model[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 0251. doi: 10.2514/6.2014-0251
    [4]
    KEYE S, BRODERSEN O, RIVERS M B. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4): 1323–1330. doi: 10.2514/1.C032598
    [5]
    RIVERS M, HUNTER C, CAMPBELL R. Further investigation of the support system effects and wing twist on the NASA common research model[C]//Proc of the 30th AIAA Applied Aerodynamics Conference. 2012: 3209. doi: 10.2514/6.2012-3209
    [6]
    YASUE K, SAWADA K. CFD-aided evaluation of Reynolds number scaling effect accounting for static model deformation[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2012, 55(5): 321–331. doi: 10.2322/tjsass.55.321
    [7]
    BALLMANN J. Experimental Analysis of high Reynolds Number structural Dynamics in ETW[C]//Proc of the 46th AIAA Aerospace Sciences Meeting and Exhibition. 2008: 841. doi: 10.2514/6.2008-841
    [8]
    BIANCOLINI M E, CELLA U, GROTH C, et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating[J]. Journal of Aerospace Engineering, 2016, 29(6): 04016061. doi: 10.1061/(asce)as.1943-5525.0000627
    [9]
    CELLA U, BIANCOLINI M E. Aeroelastic analysis of aircraft wind-tunnel model coupling structural and fluid dynamic codes[J]. Journal of Aircraft, 2012, 49(2): 407–414. doi: 10.2514/1.C031293
    [10]
    VRCHOTA P, PRACHAŘ A. Using wing model deformation for improvement of CFD results of ESWIRP project[J]. CEAS Aeronautical Journal, 2018, 9(2): 361–372. doi: 10.1007/s13272-018-0286-3
    [11]
    王艺坤, 史爱明. 机翼风洞试验模型CFD静气动弹性修正研究[J]. 科学技术与工程, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032

    WANG Y K, SHI A. Static aeroelastic correction for wind tunnel results of wing model with CFD[J]. Science Technology and Engineering, 2012, 12(15): 3685–3688. doi: 10.3969/j.issn.1671-1815.2012.15.032
    [12]
    夏生林, 赵利霞, 唐克兵, 等. CFD技术在静气动弹性修正计算中的研究与应用[C]// 第十一届全国空气弹性学术交流会会议论文集. 2009: 310-315.

    XIA S L, ZHAO L X, TANG K B, et al. The investigation and application of the technique of CFD simulation to static aeroelasticity correction[C]//Proc of the 11th Academic Conference of Aeroelasticity. 2009: 310-315.
    [13]
    LIU D W, XU X, LI Q, et al. Ispravak učinaka deformacije modela za superkritično krilo u transoničkom vjetrenom tunelu[J]. Tehnicki Vjesnik, 2017, 24(6): 1647–1655. doi: 10.17559/tv-20160525142932
    [14]
    孙岩, 张征宇, 邓小刚, 等. 风洞模型静弹性变形对气动力影响研究[J]. 空气动力学学报, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013

    SUN Y, ZHANG Z Y, DENG X G, et al. Static aeroelastic effects of wind tunnel model on aerodynamic forces[J]. Acta Aerodynamica Sinica, 2013, 31(3): 294–300. doi: 10.3969/j.issn.1672-9897.2011.03.013
    [15]
    SUN Y, WANG Y T, RONCH A, et al. A fast correction method of model deformation effects in wind tunnel tests[J]. Aerospace, 2018, 5(4): 125. doi: 10.3390/aerospace5040125
    [16]
    GIBSON T. Investigation of wind tunnel model deformation under high Reynolds number aerodynamic loading[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibition. 2002: 424. doi: 10.2514/6.2002-424
    [17]
    赵卓林, 张家齐, 徐港, 等. 一种基于CFD的增压风洞试验数据刚体修正方法[J]. 飞机设计, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007

    ZHAO Z L, ZHANG J Q, XU G, et al. A correction study on pressurized wind tunnel results based on CFD[J]. Aircraft Design, 2019, 39(6): 31–34. doi: 10.19555/j.cnki.1673-4599.2019.06.007
    [18]
    GIESING J P, KALMAN T P, RODDEN W P. Correction factory techniques for improving aerodynamic prediction methods[R]. NASA-CR-144967, 1976.
    [19]
    WIESEMAN C D. Methodology for matching experimental and computational aerodynamic data[R]. NASA-TM-100592, 1988.
    [20]
    严德, 杨超, 万志强. 应用气动力修正技术的静气动弹性发散计算[J]. 北京航空航天大学学报, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004

    YAN D, YANG C, WAN Z Q. Static Aeroelastic divergence analysis by introducing correction techniques of aerodynamic data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1146–1149. doi: 10.3969/j.issn.1001-5965.2007.10.004
    [21]
    MORENO R, NARISETTI R, VON KNOBLAUCH F, et al. A modification to the enhanced correction factor technique to correlate with experimental data[C]//Proc of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2015: 1421. doi: 10.2514/6.2015-1421
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article Metrics

    Article views (121) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return