Turn off MathJax
Article Contents
YANG Z L, WANG J X, ZHU C L, et al. Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220051
Citation: YANG Z L, WANG J X, ZHU C L, et al. Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220051

Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate

doi: 10.11729/syltlx20220051
  • Received Date: 2022-06-16
  • Accepted Date: 2022-08-03
  • Rev Recd Date: 2022-07-26
  • Available Online: 2023-06-01
  • The impinging-freezing coupling process of millimeter-sized supercooled water droplets onto a cold substrate is experimentally investigated in this work. The effects of the droplet impact velocity, initial droplet temperature (−10 ℃ to 0 ℃), and substrate temperature on the impingement dynamics and freezing behaviors of the droplet are comprehensively analyzed. The experimental results show that for a constant impact velocity, the maximum spreading diameter factor decreases with the initial droplet temperature, but it is independent of the substrate temperature. A modified universal model is proposed to describe the experimental results of the maximum spreading diameter factor. In addition, the nucleation time is advanced with the decrease of the substrate temperature, resulting in the increase of the final frozen area as the substrate temperature is −24 ℃ to −28 ℃, where ‘Coral’ nucleation appears in the contact line region during the retraction stage. Once the substrate temperature is lower than −28 ℃, ‘Fungus’ nucleation forms in thin liquid film during the spreading stage. Moreover, the freezing morphology is determined by retraction dynamics and solidification. The transition from the pancake to basin morphology is prompted due to the increase of the maximum spreading area.
  • loading
  • [1]
    CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353–385. doi: 10.1016/j.ast.2017.12.028
    [2]
    KONG W L, LIU H. A theory on the icing evolution of supercooled water near solid substrate[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1217–1236. doi: 10.1016/j.ijheatmasstransfer.2015.08.005
    [3]
    ZHANG H H, JIN Z Y, JIAO M S, et al. Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces[J]. International Journal of Thermal Sciences, 2018, 132: 498–508. doi: 10.1016/j.ijthermalsci.2018.06.032
    [4]
    JU J J, JIN Z Y, ZHANG H H, et al. The impact and freezing processes of a water droplet on different cold spherical surfaces[J]. Experimental Thermal and Fluid Science, 2018, 96: 430–440. doi: 10.1016/j.expthermflusci.2018.03.037
    [5]
    LI H X, WALDMAN R M, HU H. An experimental investigation on unsteady heat transfer and transient icing process upon impingement of water droplets[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016: 0510. doi: 10.2514/6.2016-0510
    [6]
    YAO Y N, LI C, TAO Z X, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83–92. doi: 10.1016/j.applthermaleng.2018.03.057
    [7]
    HE S Y, LI T H, HUANG Z Q, et al. Screening silica-confined single-atom catalysts for nonoxidative conversion of methane[J]. The Journal of Chemical Physics, 2021, 154(17): 174706. doi: 10.1063/5.0048962
    [8]
    HOU J Q, GONG J Y, WU X, et al. Numerical study on impacting-freezing process of the droplet on a lateral moving cold superhydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122044. doi: 10.1016/j.ijheatmasstransfer.2021.122044
    [9]
    YAO Y N, LI C, ZHANG H, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52–62. doi: 10.1016/j.apsusc.2017.04.085
    [10]
    LIU X, MIN J C, ZHANG X, et al. Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres[J]. International Journal of Multiphase Flow, 2021, 141: 103675. doi: 10.1016/j.ijmultiphaseflow.2021.103675
    [11]
    ZHANG X, LIU X, WU X M, et al. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: rebound and adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997. doi: 10.1016/j.ijheatmasstransfer.2020.119997
    [12]
    ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6): 062107. doi: 10.1063/1.4953411
    [13]
    LI H, ROISMAN I V, TROPEA C. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 133. doi: 10.1007/s00348-015-1999-2
    [14]
    张旋, 刘鑫, 吴晓敏, 等. 过冷水滴碰撞结冰的实验与模拟研究[J]. 工程热物理学报, 2020, 41(2): 402–410.
    [15]
    CHANG S N, DING L, SONG M J, et al. Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment[J]. International Journal of Multiphase Flow, 2019, 118: 150–164. doi: 10.1016/j.ijmultiphaseflow.2019.06.011
    [16]
    PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650–659. doi: 10.1063/1.868850
    [17]
    ROISMAN I V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film[J]. Physics of Fluids, 2009, 21(5): 052104. doi: 10.1063/1.3129283
    [18]
    VADILLO D C, SOUCEMARIANADIN A, DELATTRE C, et al. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces[J]. Physics of Fluids, 2009, 21(12): 122002. doi: 10.1063/1.3276259
    [19]
    LAAN N, DE BRUIN K G, BARTOLO D, et al. Maximum diameter of impacting liquid droplets[J]. Physical Review Applied, 2014, 2(4): 044018. doi: 10.1103/physrevapplied.2.044018
    [20]
    EGGERS J, FONTELOS M A, JOSSERAND C, et al. Drop dynamics after impact on a solid wall: theory and simulations[J]. Physics of Fluids, 2010, 22(6): 062101. doi: 10.1063/1.3432498
    [21]
    HU H, JIN Z Y. An icing physics study by using lifetime-based molecular tagging thermometry technique[J]. International Journal of Multiphase Flow, 2010, 36(8): 672–681. doi: 10.1016/j.ijmultiphaseflow.2010.04.001
    [22]
    ZHANG X, LIU X, MIN J C, et al. Shape variation and unique tip formation of a sessile water droplet during freezing[J]. Applied Thermal Engineering, 2019, 147: 927–934. doi: 10.1016/j.applthermaleng.2018.09.040
    [23]
    WANG C Y, WU X, HAO P F, et al. Study on a mesoscopic model of droplets freezing considering the recalescence process[J]. Physics of Fluids, 2021, 33(9): 092001. doi: 10.1063/5.0064976
    [24]
    YANG G M, GUO K H, LI N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration, 2011, 34(8): 2007–2017. doi: 10.1016/j.ijrefrig.2011.07.001
    [25]
    SUN M M, KONG W L, WANG F X, et al. Effect of nucleation and icing evolution on Run-back freezing of supercooled water droplet[J]. Aerospace Systems, 2019, 2(2): 147–153. doi: 10.1007/s42401-019-00032-y
    [26]
    SCHREMB M, ROISMAN I V, JAKIRLIĆ S, et al. Freezing behavior of supercooled water drops impacting onto a cold surface[C]// Proc of the 27th Annual Conference on Liquid Atomization and Spray Systems. 2016.
    [27]
    FANG W Z, ZHU F Q, TAO W Q, et al. How different freezing morphologies of impacting droplets form[J]. Journal of Colloid and Interface Science, 2021, 584: 403–410. doi: 10.1016/j.jcis.2020.09.119
    [28]
    SUN M M, KONG W L, WANG F X, et al. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118431. doi: 10.1016/j.ijheatmasstransfer.2019.07.081
    [29]
    WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831–842. doi: 10.1016/j.ijheatmasstransfer.2018.10.142
    [30]
    ZHANG R, HAO P F, ZHANG X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122: 395–402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076
    [31]
    ZHU C X, TAO M J, ZHAO N, et al. Study of droplet shadow zone of aircraft wing with diffusion effects[J]. AIAA Journal, 2019, 57(8): 3339–3348. doi: 10.2514/1.J058241
    [32]
    MAO T, KUHN D C S, TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169–2179. doi: 10.1002/aic.690430903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (149) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return