Citation: | ZHANG Z Y, GU Y S, LI L K, et al. Research on FADS technology of diamond-nosed aircraft without stagnation pressure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230125. |
[1] |
JOST M, SCHWEGMANN F, KOHLER T. Flush air data system – an advanced air data system for the aerospace industry[C]//Proc of the AIAA Guidance, Navigation, and Control Conference and Exhibit. 2004. .
|
[2] |
丁智坚, 周欢, 吴东升, 等. 嵌入式大气数据测量系统技术研究进展[J]. 宇航学报, 2019, 40(3): 247–257. DOI: 10.3873/j.issn.1000-1328.2019.03.001
DING Z J, ZHOU H, WU D S, et al. Review of flush air data sensing system[J]. Journal of Astronautics, 2019, 40(3): 247–257. doi: 10.3873/j.issn.1000-1328.2019.03.001
|
[3] |
WHITMORE S, MOES T, LARSON T. Preliminary results from a subsonic high-angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, algorithm development, and flight test evaluation[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. .
|
[4] |
WEISS S. Comparing three algorithms for modeling flush air data systems[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. .
|
[5] |
WHITMORE S, COBLEIGH B, HAERING E Jr. Design and calibration of the X-33 flush airdata sensing (FADS) system[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998. .
|
[6] |
BAUMANN E, PAHLE J W, DAVIS M C, et al. X-43A flush airdata sensing system flight-test results[J]. Journal of Spacecraft and Rockets, 2010, 47(1): 48–61. doi: 10.2514/1.41163
|
[7] |
王禹, 郑伟, 童建忠, 等. 飞翼飞机嵌入式大气数据系统算法研究[J]. 测控技术, 2022, 41(9): 101–106. DOI: 10.19708/j.ckjs.2021.08.263
WANG Y, ZHENG W, TONG J Z, et al. Flush air data sensing system algorithm of flying wing aircraft[J]. Measurement & Control Technology, 2022, 41(9): 101–106. doi: 10.19708/j.ckjs.2021.08.263
|
[8] |
HENRY M, WOLF H, SIEMERS P. An evaluation of Shuttle Entry Air Data System (SEADS) flight pressures - Comparisons with wind tunnel and theoretical predictions[C]//Proc of the 15th Aerodynamic Testing Conference. 1988. .
|
[9] |
STEPHAN T, MARKUS S, MICHAEL C, et al. Hybrid navigation system for the SHEFEX II mission[C]//Proc of the AIAA Guidance, Navigation and Control Sensor Technologies in Europe. 2008. .
|
[10] |
王希洋, 柏楠, 苑景春, 等. FADS系统变管径引气管路压力延迟误差补偿方法[J]. 战术导弹技术, 2015(2): 37–42. DOI: 10.16358/j.issn.1009-1300.2015.02.08
WANG X Y, BAI N, YUAN J C, et al. Compensation method for pressure delay error of variable diameter exhaust pipe in FADS system[J]. Tactical Missile Technology, 2015(2): 37–42. doi: 10.16358/j.issn.1009-1300.2015.02.08
|
[11] |
李清东, 陈璐璐, 张孝功, 等. FADS快速智能故障检测和诊断技术[J]. 系统工程与电子技术, 2009, 31(10): 2544–2546. , 2009, 31(10): 2544–2546. doi: 10.3321/j.issn:1001-506X.2009.10.058
|
[12] |
杨胜江, 赵景朝, 杨志红. 嵌入式大气数据传感与惯性导航信息融合方法研究[J]. 战术导弹技术, 2016(2): 95–100. DOI: 10.16358/j.issn.1009-1300.2016.02.17
YANG S J, ZHAO J C, YANG Z H. Research on information fusion method of embedded atmospheric data sensing and inertial navigation[J]. Tactical Missile Technology, 2016(2): 95–100. doi: 10.16358/j.issn.1009-1300.2016.02.17
|
[13] |
陈广强, 刘吴月, 豆修鑫, 等. 吸气式空空导弹FADS系统设计[J]. 中国科学:技术科学, 2016, 46(11): 1193–1206. DOI: 10.1360/N092016-00258
CHEN G Q, LIU W Y, DOU X X, et al. Flush air data sensing system design for air breathing air-to-air missile[J]. Scientia Sinica:Technologica, 2016, 46(11): 1193–1206. doi: 10.1360/N092016-00258
|
[14] |
王岩, 郑伟. 分布嵌入式大气数据系统算法的初步研究[J]. 飞机设计, 2008, 28(6): 5–11,26. DOI: 10.3969/j.issn.1673-4599.2008.06.002
WANG Y, ZHENG W. Elementary study on the distributed flush air data system arithmetic[J]. Aircraft Design, 2008, 28(6): 5–11,26. doi: 10.3969/j.issn.1673-4599.2008.06.002
|
[15] |
王鹏, 金鑫. 尖锥前体飞行器FADS系统的人工神经网络建模及风洞试验研究[J]. 实验流体力学, 2019, 33(5): 57–63. DOI: 10.11729/syltlx20180125
WANG P, JIN X. Study on artificial neural network modeling and wind tunnel test for the FADS system applied to the vehicle with sharp nosed fore-bodies[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 57–63. doi: 10.11729/syltlx20180125
|
[16] |
陈广强, 刘吴月, 豆修鑫, 等. 超声速飞行器FADS系统实时解算设计与验证[J]. 空气动力学学报, 2018, 36(4): 561–570. DOI: 10.7638/kqdlxxb-2016.0073
CHEN G Q, LIU W Y, DOU X X, et al. Flush air data sensing system real-time solving design and verification for supersonic vehicle[J]. Acta Aerodynamica Sinica, 2018, 36(4): 561–570. doi: 10.7638/kqdlxxb-2016.0073
|
[17] |
WHITMORE S, MOES T, CZERNIEJEWSKI M, et al. Application of a flush airdata sensing system to a wing leading edge(LE-FADS)[C]//Proc of the 31st Aerospace Sciences Meeting. 1993. .
|
[18] |
王鹏, 胡远思, 金鑫. 尖楔前体飞行器FADS系统驻点压力对神经网络算法精度的影响[J]. 宇航学报, 2016, 37(9): 1072–1079. DOI: 10.3873/j.issn.1000-1328.2016.09.006
WANG P, HU Y S, JIN X. Effect of stagnation pressure on the neural network algorithm accuracy for FADS system applied to the vehicle with sharp wedged fore-bodies[J]. Journal of Astronautics, 2016, 37(9): 1072–1079. doi: 10.3873/j.issn.1000-1328.2016.09.006
|
[19] |
WHITMORE S A, MOES T R, LEONDES C T. Development of a pneumatic high-angle-of-attack flush airdata sensing system[J]. Control and Dynamic Systems, 1992: 453-511. .
|
[20] |
ROHLOFF T J, WHITMORE S A, CATTON I. Fault-tolerant neural network algorithm for flush air data sensing[J]. Journal of Aircraft, 1999, 36(3): 541–549. doi: 10.2514/2.2489
|
[21] |
TAKAKI R, TAKIZAWA M, et al. ADS measurement of HYFLEX (HYpersonic FLight EXperiment)[C]//Proc of the 35th Aerospace Sciences Meeting and Exhibit. 1997. .
|
[22] |
KARLGAARD C D, KUTTY P, SCHOENENBERGER M, et al. Mars entry atmospheric data system trajectory reconstruction algorithms and flight results[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. .
|
[23] |
黄喜元, 陈洪波, 朱如意. 高超声速飞行器嵌入式大气数据获取技术研究[J]. 导弹与航天运载技术, 2017(3): 58–64. DOI: 10.7654/j.issn.1004-7182.20170313
HUANG X Y, CHEN H B, ZHU R Y. Research on air data acquisition technology of hypersonic vehicles[J]. Missiles and Space Vehicles, 2017(3): 58–64. doi: 10.7654/j.issn.1004-7182.20170313
|