Turn off MathJax
Article Contents
ZHANG X H, WANG Z W, YAO R. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220041
Citation: ZHANG X H, WANG Z W, YAO R. The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220041

The aerodynamic heating consistency study between CFD and experiment for air-breathing integrated vehicle

doi: 10.11729/syltlx20220041
  • Received Date: 2022-05-11
  • Accepted Date: 2023-02-08
  • Rev Recd Date: 2023-01-31
  • Available Online: 2023-06-12
  • In order to improve the accuracy of simulation and obtain the aerodynamic heating consistency of the prediction method for the typical integrated design of the aircraft forebody model, experiments were carried out at FD−20a shock tunnel under the condition of Ma = 6, Re = 1.14 × 107~2.98 × 107 m−1, α = 0°~8°. Numerical simulations were applied through the compressible Navier−Stokes equation implemented with the finite volume method, Roe’s flux difference splitting scheme, LU−SGS spatial method and Spalart–Allmaras (SA) turbulence model. Simulation results were compared with the experimental data to validate the prediction methods. Results show that with the increase of the complexity and disturbance intensity, the heat flux consistency decreases. The compression surface flow was dominated by the attached flow and small separation, where relative good consistency was found between the simulation and experimental data with the average difference being about 22.3%. The throat boundary layer was interfered by shock waves, and 43.5% difference was found between the heat flux simulation and experimental data. The heat flux difference in the isolation section increased to 31.8%. When the oblique shock impinged on the subsonic part of the bow shock and three dimensional flow patterns were obvious, the difference of heat flux reached the maximum of around 100% in three dimensional areas. Mesh, simulation methods and unsteady characteristics are concluded as the reasons for heat flux consistency decreasing along the airflow.
  • loading
  • [1]
    乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028

    QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43–59. doi: 10.11729/syltlx20190028
    [2]
    杨基明, 李祝飞, 朱雨建, 等. 激波的传播与干扰[J]. 力学进展, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009

    YANG J M, LI Z F, ZHU Y J, et al. Shock wave propagation and interactions[J]. Advances in Mechanics, 2016, 46(1): 541–587. doi: 10.6052/1000-0992-16-009
    [3]
    童福林, 段俊亦, 周桂宇, 等. 激波/湍流边界层干扰压力脉动特性数值研究[J]. 力学学报, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094

    TONG F L, DUAN J Y, ZHOU G Y, et al. Statistical characteristics of pressure fluctuation in shock wave and turbulent boundary layer interaction[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(7): 1829–1841. doi: 10.6052/0459-1879-21-094
    [4]
    陈苏宇. 高超声速压缩拐角气动热环境研究[D]. 绵阳: 中国空气动力研究与发展中心, 2014.

    CHEN S Y. Investigation of aerothermal environment of hypersonic compression corners[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School, 2014.
    [5]
    李素循, 倪招勇. 高超声速层流干扰流场研究[J]. 宇航学报, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001

    LI S X, NI Z Y. Investigation of laminar interactive flowfield in hypersonic flow[J]. Journal of Astronautics, 2003, 24(6): 547–551. doi: 10.3321/j.issn:1000-1328.2003.06.001
    [6]
    WIETING A, HOLDEN M. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8[C]// Proc of the 22nd Thermophysics Conference. 1987. doi: 10.2514/6.1987-1511
    [7]
    HOLDEN M, MOSELLE J, WIETING A, et al. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-477
    [8]
    潘沙, 田正雨, 冯定华, 等. 超燃冲压发动机唇口气动热计算研究与分析[J]. 航空动力学报, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030

    PAN S, TIAN Z Y, FENG D H, et al. Computation and analysis of aeroheating of scramjet inlet cowl lip[J]. Journal of Aerospace Power, 2009, 24(9): 2096–2100. doi: 10.13224/j.cnki.jasp.2009.09.030
    [9]
    肖丰收, 李祝飞, 朱雨建, 等. 第Ⅳ类激波-激波干扰非定常性及其敏感因素分析[J]. 空气动力学学报, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028

    XIAO F S, LI Z F, ZHU Y J, et al. Numerical investigation on some key factors for the unsteady type Ⅳ shock-shock interaction[J]. Acta Aerodynamica Sinica, 2017, 35(1): 20–26. doi: 10.7638/kqdlxxb-2015.0028
    [10]
    张恩来, 李祝飞, 李一鸣, 等. 斜激波入射V形钝前缘溢流口激波干扰研究[J]. 实验流体力学, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002

    ZHANG E L, LI Z F, LI Y M, et al. Investigation on the shock interactions between an incident shock and a plate with V-shaped blunt leading edge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 50–57. doi: 10.11729/syltlx20180002
    [11]
    HOLDEN M S. Studies of scramjet performance in the LENS facilities[C]//Proc of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition. 2000: 3604.
    [12]
    黎作武. NNLD算法在高超声速气动热计算中的确认与验证[C]//第七届全国流体力学学术会议论文摘要集. 2012: 126.
    [13]
    张涵信. 关于 CFD 高精度保真的数值模拟研究[J]. 空气动力学学报, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211

    ZHANG H X. Investigations on fidelity of high order accurate numerical simulation for computational fluid dynamics[J]. Acta Aerodynamica Sinica, 2016, 34(1): 1–4. doi: 10.7638/kqdlxxb-2015.0211
    [14]
    姜振华, 阎超. 高超声速热流高精度数值模拟方法[J]. 北京航空航天大学学报, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002

    JIANG Z H, YAN C. High order accurate methods in numerical simulation of hypersonic heat transfer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1529–1533. doi: 10.13700/j.bh.1001-5965.2011.12.002
    [15]
    HOLDEN M S. Ground test measurements of jet interaction effects on AIT interceptors at fully duplicated flight conditions[C]//Proc of the 8th DOD Electromagnetic Windows Symposium. 2000.
    [16]
    徐大军, 蔡国飙, 乐川. 吸气式高超声速飞行器气动热试验研究[J]. 宇航学报, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037

    XU D J, CAI G B, YUE C. Aeroheating experiment for airbreathing hypersonic vehicle[J]. Journal of Astronautics, 2006, 27(5): 1004–1009,1095. doi: 10.3321/j.issn:1000-1328.2006.05.037
    [17]
    陈坚强. 国家数值风洞(NNW)工程关键技术进展[J]. 中国科学:技术科学, 2021, 51(11): 1326–1347.

    Chen J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica: Technologica, 2021, 51(11): 1326–1347.
    [18]
    YAMAMOTO Y. Numerical and experimental aerothermo-dynamics of strong hypersonic shock-shock interactions[C]//Proc of the 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2002. doi: 10.2514/6.2002-2891
    [19]
    贾居红. 临近空间高超声速气动热数值模拟研究[D]. 北京: 北京理工大学, 2016.

    JIA J H. Numerical study on hypersonic aerothermodynamic of near-space flight vehicle[D]. Beijing: Beijing Institute of Technology, 2016.
    [20]
    曾磊. 测热试验数据后处理方法及误差机理分析[D]. 绵阳: 中国空气动力研究与发展中心研究生部, 2012.

    ZENG L. Study on data processing method and error mechanism analysis of heat flux measurement in wind tunnel[D]. Mianyang: China Aerodynamics Research and Development Center Graduate School. 2012.
    [21]
    朱广生, 聂春生, 曹占伟, 等. 气动热环境试验及测量技术研究进展[J]. 实验流体力学, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137

    ZHU G S, NIE C S, CAO Z W, et al. Research progress of aerodynamic thermal environment test and measurement technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 1–10. doi: 10.11729/syltlx20180137
    [22]
    钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185

    QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185
    [23]
    MAVRIPLIS D J. Progress in CFD discretizations, algorithms and solvers for aerodynamic flows[C]//Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-2944
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(2)

    Article Metrics

    Article views (122) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return