Citation: | LEI P F, ZHOU E M, HU Y H. Experiment of aerodynamic performance of axial compressor at low Reynolds number condition[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 48-55. DOI: 10.11729/syltlx20220026 |
Aerodynamic performances of the axial compressor of the 0.6 m continuous transonic wind tunnel are tested under various pressure conditions, and the Reynolds number effects are studied experimentally. The lowest total pressure of the compressor inlet is about 3 kPa, and the corresponding Reynolds number is approximately 5 × 104. Test results show that the Reynolds number effects are significant when as Reynolds number is below the critical value, which is 5 × 105 in the compressor design. Compared to the large Reynolds number condition, the pressure ratio under the low Reynolds number condition reduces rapidly, while the surge margin changes slightly. The mechanical loss of the shaft becomes the major loss of the compressor as the operation pressure drops, and has a significant influence on the compressor efficiency. Additionally, the correlations of the pressure ratio and efficiency with Reynolds number, obtained by data analysis, can offer a useful reference for design and numerical simulation of the axial compressor under the at low Reynolds number condition.
[1] |
LEWIS R I. Turbomachinery performance analysis[M]. Arnold, London: Butterworth-Heinemann, 1996. doi: 10.1016/B978-0-340-63191-1.X5000-4
|
[2] |
ECKERT B. Überblick über Forschungsergebnisse des FKFS-Stuttgart an axial durchströmten Verdichtern[R]. Report 171 of the Lilienthal Society, 1943: 34-49.
|
[3] |
CARTER A D S, MOSS C E, GREEN, G R, et al. The effect of Reynolds number on the performance of a single-stage compressor[R]. A. R. C. Technical Report R. &M. No. 3184, 1960.
|
[4] |
BULLOCK R O. Analysis of Reynolds number and scale effects on performance of turbomachinery[J]. Journal of Engineering for Power, 1964, 86(3): 247–256. doi: 10.1115/1.3677587
|
[5] |
WASSELL A B. Reynolds number effects in axial compressors[J]. Journal of Engineering for Gas Turbines & Power, 1968, 90(2): 149–156. doi: 10.1115/1.3609154
|
[6] |
McKENZIE A B. Axial flow fans and compressors: aerodynamic design and performance[M]. Farnham, Surrey, United Kingdom: Ashgate Publishing. 1997.
|
[7] |
HANLY K, GRIMES R, WALSH P. The effects of Reynolds number on the aerodynamic performance of geometrically similar fans[C]//Proceedings of ASME 2008 Fluids Engineering Division Summer Meeting Collocated With the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. 2009: 183-191. doi: 10.1115/FEDSM2008-55149
|
[8] |
郭捷, 王咏梅, 杜辉, 等. 低雷诺数条件对涡扇发动机风扇/压气机性能和稳定性影响的试验研究[J]. 航空发动机, 2004, 30(4): 4–6. DOI: 10.3969/j.issn.1672-3147.2004.04.002
GUO J, WANG Y M, DU H, et al. Experimental investigation of low Reynolds number effects on fan/compressor performance and stability for turbofans[J]. Aeroengine, 2004, 30(4): 4–6. doi: 10.3969/j.issn.1672-3147.2004.04.002
|
[9] |
赵胜丰, 卢新根, 朱俊强. 雷诺数对跨声速压气机转子内部流动失稳触发机理的影响[J]. 推进技术, 2013, 34(1): 25–30. DOI: 10.13675/j.cnki.tjjs.2013.01.008
ZHAO S F, LU X G, ZHU J Q. Effects of Reynolds number on the instability inception mechanism of a transonic compressor[J]. Journal of Propulsion Technology, 2013, 34(1): 25–30. doi: 10.13675/j.cnki.tjjs.2013.01.008
|
[10] |
周恩民, 程松, 刘恺, 等. 0.6 m连续式风洞压缩机系统的调试研究[J]. 流体机械, 2015, 43(11): 10–15. DOI: 10.3969/j.issn.1005-0329.2015.11.003
ZHOU E M, CHENG S, LIU K, et al. Study of the compressor system’s debugging in 0.6 m continuous wind tunnel[J]. Fluid Machinery, 2015, 43(11): 10–15. doi: 10.3969/j.issn.1005-0329.2015.11.003
|
[11] |
熊波, 程松, 罗新福, 等. 低雷诺数效应对0.6 m连续式风洞性能影响[J]. 实验流体力学, 2017, 31(1): 87–92, 99. DOI: 10.11729/syltlx20160079
XIONG B, CHENG S, LUO X F, et al. Effects of low Reynolds number on performance of 0.6 m continuous wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 87–92, 99. doi: 10.11729/syltlx20160079
|
[12] |
向宏辉, 侯宽新, 刘宽, 等. 基于扭矩测量的轴流压气机效率评定方法研究[J]. 燃气涡轮试验与研究, 2021, 34(4): 1–6. DOI: 10.3969/j.issn.1672-2620.2021.04.001
XIANG H H, HOU K X, LIU K, et al. Efficiency evaluation method of axial compressor based on torque measurement[J]. Gas Turbine Experiment and Research, 2021, 34(4): 1–6. doi: 10.3969/j.issn.1672-2620.2021.04.001
|
[13] |
廖达雄, 陈吉明, 郑娟, 等. 0.6 m连续式跨声速风洞总体性能[J]. 实验流体力学, 2018, 32(6): 88–93. DOI: 10.11729/syltlx20170086
LIAO D X, CHEN J M, ZHENG J, et al. General performance of 0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88–93. doi: 10.11729/syltlx20170086
|
[14] |
裴海涛, 陈吉明, 陈钦, 等. 0.6 m连续式跨声速风洞真空系统设计及性能分析[J]. 真空科学与技术学报, 2021, 41(11): 1087–1093. DOI: 10.13922/j.cnki.cjvst.202104004
PEI H T, CHEN J M, CHEN Q, et al. Design and performance analysis of vacuum system in the 0.6 m continuous transonic wind tunnel[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(11): 1087–1093. doi: 10.13922/j.cnki.cjvst.202104004
|
[15] |
周恩民, 程松, 许靖, 等. 0.6 m连续式跨声速风洞AV90 –3轴流压缩机喘振边界测试研究[J]. 实验流体力学, 2014, 28(5): 81–85. DOI: 10.11729/syltlx20130083
ZHOU E M, CHENG S, XU J, et al. Surge margin test and research of AV90–3 axial compressor in 0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5): 81–85. doi: 10.11729/syltlx20130083
|
[16] |
雷剑宇, 廖明夫, 杨伸记. 预测风机喘振边界的新方法[J]. 风机技术, 2005, 47(4): 52–53, 57. DOI: 10.3969/j.issn.1006-8155.2005.04.019
LEI J Y, LIAO M F, YANG S J. New method of predicting surge lines of fan[J]. Compressor Blower & Fan Technology, 2005, 47(4): 52–53, 57. doi: 10.3969/j.issn.1006-8155.2005.04.019
|
[17] |
GUNN J A, MARTINDALE W R, WAGNER D W. Performance evaluation of a transonic wind tunnel com-pressor[C]//Proc of the 28th Joint Propulsion Conference and Exhibit. 1992: 3927. doi: 10.2514/6.1992-3927
|
[18] |
陈天君. 浅谈轴流压缩机和离心压缩机的喘振试验[J]. 化学工业与工程技术, 2007, 28(S1): 120–122.
CHEN T J. Surge test of axial compressor and centrifugal compressor[J]. Journal of Chemical Industry & Engineering, 2007, 28(S1): 120–122.
|
[19] |
雷鹏飞, 周恩民, 胡运华. 连续式跨声速风洞与压缩机的气动性能匹配[J]. 航空动力学报, 2021, 36(2): 233–239. DOI: 10.13224/j.cnki.jasp.2021.02.002
LEI P F, ZHOU E M, HU Y H. Aerodynamic performance matching of continuous transonic wind tunnel and its driving compressor[J]. Journal of Aerospace Power, 2021, 36(2): 233–239. doi: 10.13224/j.cnki.jasp.2021.02.002
|