LI L, PENG L, ZHAO W. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230059.
Citation: LI L, PENG L, ZHAO W. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230059.

Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization

More Information
  • Received Date: April 27, 2023
  • Revised Date: July 02, 2023
  • Accepted Date: July 17, 2023
  • Available Online: October 17, 2023
  • An experimental setup using high temperature rotating disc centrifugal atomization was developed to study the preparation technology of the aluminum alloy powder for additive manufacturing with high sphericity, high particle size concentration and no satellite powder. The flow spreading pattern of the aluminum liquid was investigated, and four typical regions were found to exist on the surface of the disc, which were named and analyzed. The microstructures of the 1060 and AlSi10Mg powder samples were analyzed by scanning electron microscopy (SEM). The powder particle size distribution curves for typical experiments were analyzed by fitting a single-peak Extreme model. A shift in the splitting mode caused by a decrease in the flow rate of the aluminum liquid was investigated, which was effective in increasing the fines rate and reducing the median diameter. The effects of three different disk configurations, plane, tapered and curved, on the median diameter were compared. The effect law of the rotational speed and disc diameter on the median diameter of 1060 aluminum powder was analyzed, and a new theoretical formula of the particle size was obtained by regression analysis.
  • [1]
    NEĬKOV O D, NABOYCHENKO S, MOURACHOVA I. Handbook of non-ferrous metal powders: technologies and applications[M]. Burlington: Elsevier, 2009: 125-127.
    [2]
    KAUFMANN A R. Method and apparatus for making powder: US3099041[P/OL]. 1963-07-30[2023-04-28]. https://www.freepatentsonline.com/3099041.pdf.
    [3]
    KAUFMANN A. Production of pure, spherical powders: US3802816[P]. 1974-04-09[2023-04-28]. https://www.freepatentsonline.com/3802816.pdf
    [4]
    邹宇, 廖先杰, 赖奇, 等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展, 2019, 38(11): 1093–1101. DOI: 10.7502/j.issn.1674-3962.201808033

    ZOU Y, LIAO X J, LAI Q, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019, 38(11): 1093–1101. doi: 10.7502/j.issn.1674-3962.201808033
    [5]
    SATOH T, OKIMOTO K, CHOI C J, et al. Comparison of characteristics of rapidly solidified Zn-22Al superplastic ribbon by melt spinning and the powder by centrifugal atomization[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1991, 38(1): 6–9. doi: 10.2497/jjspm.38.6
    [6]
    SATOH T, OKIMOTO K, NISHIDA S I. Optimum producing conditions of rapidly solidified powder using centrifugal atomization method[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(12): 1149–1153. doi: 10.2497/jjspm.40.1149
    [7]
    SATOH T, OKIMOTO K, NISHIDA S I, et al. Characteristics of Al-10%Mg pre-alloyed powder and its extruded bar using centrifugal atomization process[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(8): 933–938. doi: 10.2497/jjspm.41.933
    [8]
    SATOH T, SAKAMOTO M, LIU H N. Application of rapid solidification process to high chromium cast iron and evaluation of mechanical properties and oxidation resistance of the P/M alloys[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48(12): 1119–1125. doi: 10.2497/jjspm.48.1119
    [9]
    ANGERS R, TREMBLAY R, DESROSIERS L, et al. Rotating disk coatings for centrifugal atomization of aluminium and magnesium alloys[J]. Canadian Metallurgical Quarterly, 1996, 35(3): 291–297. doi: 10.1016/0008-4433(96)00004-3
    [10]
    ANGERS R, DUBÉ D, TREMBLAY R. Inverted disk centrifugal atomization of 2024[J]. International Journal of Powder Metallurgy, 1994, 30(4): 429–434.
    [11]
    ANGERS R, TREMBLAY R, DUBÉ D. Formation of irregular particles during centrifugal atomization of AZ91 alloy[J]. Materials Letters, 1997, 33(1-2): 13–18. doi: 10.1016/s0167-577x(97)00072-4
    [12]
    LABRECQUE C, ANGERS R, TREMBLAY R, et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy[J]. Canadian Metallurgical Quarterly, 1997, 36(3): 169–175. doi: 10.1016/S0008-4433(97)00007-4
    [13]
    陈振华, 周多三, 王云, 等. 快速凝固Al-Zn-Mg-Cu粉末合金的研究[J]. 湖南冶金, 1991(2): 22–24.
    [14]
    陈振华, 黄培云, 蒋向阳, 等. 制取快速凝固微细金属粉末的装置和原理[J]. 中国有色金属学报, 1994, 4(1): 43–49. doi: 10.3321/j.issn:1004-0609.1994.01.011
    [15]
    温树德. 采用离心式雾化生产金属粉末[J]. 国外金属热处理, 1997(3): 29–32.
    [16]
    ÖZTÜRK S, ARSLAN F. Production of rapidly solidified metal powders by water cooled rotating disc atomisation[J]. Powder Metallurgy, 2001, 44(2): 171–176. doi: 10.1179/003258901666220
    [17]
    ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of production parameters on cooling rates of AA2014 alloy powders produced by water jet cooled, rotating disc atomisation[J]. Powder Metallurgy, 2003, 46(4): 342–348. doi: 10.1179/003258903225008599
    [18]
    ÖZTÜRK S, ÖZTÜRK B, USTA G. Characteristics of rapidly solidified Cu-10%Sn alloy powders produced by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2011, 54(5): 577–584. doi: 10.1179/1743290110y.0000000002
    [19]
    ESLAMIAN M, RAK J, ASHGRIZ N. Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization[J]. Powder Technology, 2008, 184(1): 11–20. doi: 10.1016/j.powtec.2007.07.045
    [20]
    刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究[J]. 稀有金属材料与工程, 2021, 50(5): 1767–1774.

    LIU Y J, HU Q, ZHAO X M, et al. Investigation of Centrifugal Atomization Technology of High Fluidity Aluminium Alloy Powder for Additive Manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1767–1774.
    [21]
    PLOOKPHOL T, WISUTMETHANGOON S, GONSRANG S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization[J]. Powder Technology, 2011, 214(3): 506–512. doi: 10.1016/j.powtec.2011.09.015
    [22]
    ZHANG L P, ZHAO Y Y. Particle size distribution of tin powder produced by centrifugal atomisation using rotating cups[J]. Powder Technology, 2017, 318: 62–67. doi: 10.1016/j.powtec.2017.05.038
    [23]
    ZHAO Y Y. Analysis of flow development in centrifugal atomization: part I. Film thickness of a fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 959–971. doi: 10.1088/0965-0393/12/5/013
    [24]
    ZHAO Y Y. Analysis of flow development in centrifugal atomization: part II. Disintegration of a non-fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 973–983. doi: 10.1088/0965-0393/12/5/014
    [25]
    ZHAO Y Y. Considerations in designing a centrifugal atomiser for metal powder production[J]. Materials & Design, 2006, 27(9): 745–750. doi: 10.1016/j.matdes.2005.01.011
    [26]
    ALEJANDRA CEGARRA SALGES S, PIJUAN J, HERNÁNDEZ R, et al. Effect of processing parameters on copper powder produced by novel hybrid atomisation technique[J]. Powder Metallurgy, 2020, 63(2): 142–148. doi: 10.1080/00325899.2020.1724431
    [27]
    WANG D X, LING X, PENG H, et al. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9267–9275. doi: 10.1021/acs.iecr.6b01428
    [28]
    王东祥, 凌祥, 彭浩, 等. 转盘表面黏性薄液膜稳态流动特性数值模拟[J]. 化工学报, 2017, 68(6): 2321–2327. DOI: 10.11949/j.issn.0438-1157.20170040

    WANG D X, LING X, PENG H, et al. Numerical simulation of stable flow dynamics of viscous film on spinning disk surface[J]. CIESC Journal, 2017, 68(6): 2321–2327. doi: 10.11949/j.issn.0438-1157.20170040
    [29]
    王东祥, 崔政伟, 俞建峰, 等. 牛顿型黏性物料转盘离心雾化成粒特性[J]. 食品与机械, 2018, 34(10): 75–80. DOI: 10.13652/j.issn.1003-5788.2018.10.016

    WANG D X, CUI Z W, YU J F, et al. Particle characteristics of centrifugal atomization by rotary disk for Newtonian viscous fluid[J]. Food & Machinery, 2018, 34(10): 75–80. doi: 10.13652/j.issn.1003-5788.2018.10.016
    [30]
    WANG D X, LING X, PENG H, et al. High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag[J]. Applied Thermal Engineering, 2017, 125: 846–855. doi: 10.1016/j.applthermaleng.2017.07.075
    [31]
    XU J X, CHEN C Y, SHEN L Y, et al. Atomization mechanism and powder morphology in laminar flow gas atomization[J]. Acta Physica Sinica, 2021, 70(14): 140201. doi: 10.7498/aps.70.20202071
    [32]
    HINZE J O, MILBORN H. Atomization of liquids by means of a rotating cup[J]. Journal of Applied Mechanics, 1950, 17(2): 145–153. doi: 10.1115/1.4010093
    [33]
    CHAMPAGNE B, ANGERS R. Fabrication of powders by the rotating electrode process[J]. International Journal of Powder Metallurgy, 1980, 16(4): 359–365.
    [34]
    CHAMPAGNE B, ANGERS R. REP atomization mechanisms[J]. PMI Powder Metallurgy International, 1984, 16: 125–128.
    [35]
    WALTON W H, PREWETT W C. The production of sprays and mists of uniform drop size by means of spinning disc type sprayers[J]. Proceedings of the Physical Society. Section B, 1949, 62(6): 341–350. doi: 10.1088/0370-1301/62/6/301
    [36]
    CHAMPAGNE B, ANGERS R. Size distribution of powders atomized by the rotating electrode process[J]. Modern Development in Powder Metallurgy, 1980, 12: 83–104.
    [37]
    DUNKLEY J J, ADERHOLD D. Centrifugal atomization of metal powders[J]. Advances in Powder Metallurgy and Particulate Materials, 2007, 1: 2–8.
    [38]
    TORNBERG C. Gas Efficiency in different atomization systems[J]. Advances in Powder Metallurgy & Particulate Materials, 1992, 1: 127–135.
    [39]
    国为民, 陈生大, 冯涤. 等离子旋转电极法制取镍基高温合金粉末工艺的研究[J]. 航空工程与维修, 1999(5): 44–46. DOI: 10.3969/j.issn.1672-0989.1999.05.019

    GUO W M, CHEN S D, FENG D. Study on process on nickel superalloy powder by the plasmarotation electrode[J]. Aviation Engineering & Maintenance, 1999(5): 44–46. doi: 10.3969/j.issn.1672-0989.1999.05.019
  • Related Articles

    [1]ZHU Xinxin, WANG Hui, HU Dezhou, HUANG Zhenjun, ZHAO Wenfeng. Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230051
    [2]CHEN Suyu, DING Tao, KONG Rongzong, TIAN Runyu, LIU Jichun, GONG Hongming. Heat flux measurement of small scale gap corner at high Mach numbers[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 89-96. DOI: 10.11729/syltlx20210063
    [3]ZHU Xinxin, LI Zeyu, ZHAO Wenfeng, WANG Hui, YANG Kai, YANG Qingtao. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83-88. DOI: 10.11729/syltlx20210011
    [4]ZHU Xinxin, WANG Hui, YANG Kai, ZHU Tao, YANG Qingtao, LIU Jinbo. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97-102, 108. DOI: 10.11729/syltlx20190134
    [5]Li Yu, Zhu Guangsheng, Nie Chunsheng, Tan Meijing, Chen Weihua, Cao Zhanwei. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110
    [6]Zhu Xinxin, Yang Qingtao, Wang Hui, Yang Kai, Zhu Tao. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34-40. DOI: 10.11729/syltlx20180071
    [7]Gong Hongming, Chen Jingqiu, Li Li, Tian Runyu. Experimental investigationon the aerodynamic heating to tile-to-tile gaps in tubulent bouandry layer[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 13-18,25. DOI: 10.11729/syltlx20140093
    [8]Yang Qingtao, Bai Hanchen, Zhang Tao, Wang Hui. Effects of adiabatic structure on heat flux measurement using a slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 92-98. DOI: 10.11729/syltlx20130085
    [9]HUANG Zong-bo, WANG Xun-nian, ZHANG Rong-ping. Investigation of gap effect on the rudder hinge moment characteristics[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 1-6. DOI: 10.3969/j.issn.1672-9897.2007.04.001
    [10]TANG Gui-ming. AExperimental investigation of heat transfer distributions in a deep gap[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 1-6. DOI: 10.3969/j.issn.1672-9897.2000.04.001
  • Cited by

    Periodical cited type(2)

    1. 刘晓宏,温治,杜宇航,苏福永,张四宗,楼国锋. 基于Fluent的气液双流体喷嘴雾化特性研究. 机电工程技术. 2024(03): 26-29+91 .
    2. 彭燕祥,张华,何贵成. 基于最大熵原理的喷雾液滴粒径分布预测研究. 农业机械学报. 2023(09): 217-226 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (130) PDF downloads (18) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close