Citation: | LI L, PENG L, ZHAO W. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230059. |
[1] |
NEĬKOV O D, NABOYCHENKO S, MOURACHOVA I. Handbook of non-ferrous metal powders: technologies and applications[M]. Burlington: Elsevier, 2009: 125-127.
|
[2] |
KAUFMANN A R. Method and apparatus for making powder: US3099041[P/OL]. 1963-07-30[2023-04-28]. https://www.freepatentsonline.com/3099041.pdf.
|
[3] |
KAUFMANN A. Production of pure, spherical powders: US3802816[P]. 1974-04-09[2023-04-28]. https://www.freepatentsonline.com/3802816.pdf
|
[4] |
邹宇, 廖先杰, 赖奇, 等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展, 2019, 38(11): 1093–1101. DOI: 10.7502/j.issn.1674-3962.201808033
ZOU Y, LIAO X J, LAI Q, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019, 38(11): 1093–1101. doi: 10.7502/j.issn.1674-3962.201808033
|
[5] |
SATOH T, OKIMOTO K, CHOI C J, et al. Comparison of characteristics of rapidly solidified Zn-22Al superplastic ribbon by melt spinning and the powder by centrifugal atomization[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1991, 38(1): 6–9. doi: 10.2497/jjspm.38.6
|
[6] |
SATOH T, OKIMOTO K, NISHIDA S I. Optimum producing conditions of rapidly solidified powder using centrifugal atomization method[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(12): 1149–1153. doi: 10.2497/jjspm.40.1149
|
[7] |
SATOH T, OKIMOTO K, NISHIDA S I, et al. Characteristics of Al-10%Mg pre-alloyed powder and its extruded bar using centrifugal atomization process[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(8): 933–938. doi: 10.2497/jjspm.41.933
|
[8] |
SATOH T, SAKAMOTO M, LIU H N. Application of rapid solidification process to high chromium cast iron and evaluation of mechanical properties and oxidation resistance of the P/M alloys[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48(12): 1119–1125. doi: 10.2497/jjspm.48.1119
|
[9] |
ANGERS R, TREMBLAY R, DESROSIERS L, et al. Rotating disk coatings for centrifugal atomization of aluminium and magnesium alloys[J]. Canadian Metallurgical Quarterly, 1996, 35(3): 291–297. doi: 10.1016/0008-4433(96)00004-3
|
[10] |
ANGERS R, DUBÉ D, TREMBLAY R. Inverted disk centrifugal atomization of 2024[J]. International Journal of Powder Metallurgy, 1994, 30(4): 429–434.
|
[11] |
ANGERS R, TREMBLAY R, DUBÉ D. Formation of irregular particles during centrifugal atomization of AZ91 alloy[J]. Materials Letters, 1997, 33(1-2): 13–18. doi: 10.1016/s0167-577x(97)00072-4
|
[12] |
LABRECQUE C, ANGERS R, TREMBLAY R, et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy[J]. Canadian Metallurgical Quarterly, 1997, 36(3): 169–175. doi: 10.1016/S0008-4433(97)00007-4
|
[13] |
陈振华, 周多三, 王云, 等. 快速凝固Al-Zn-Mg-Cu粉末合金的研究[J]. 湖南冶金, 1991(2): 22–24.
|
[14] |
陈振华, 黄培云, 蒋向阳, 等. 制取快速凝固微细金属粉末的装置和原理[J]. 中国有色金属学报, 1994, 4(1): 43–49. doi: 10.3321/j.issn:1004-0609.1994.01.011
|
[15] |
温树德. 采用离心式雾化生产金属粉末[J]. 国外金属热处理, 1997(3): 29–32.
|
[16] |
ÖZTÜRK S, ARSLAN F. Production of rapidly solidified metal powders by water cooled rotating disc atomisation[J]. Powder Metallurgy, 2001, 44(2): 171–176. doi: 10.1179/003258901666220
|
[17] |
ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of production parameters on cooling rates of AA2014 alloy powders produced by water jet cooled, rotating disc atomisation[J]. Powder Metallurgy, 2003, 46(4): 342–348. doi: 10.1179/003258903225008599
|
[18] |
ÖZTÜRK S, ÖZTÜRK B, USTA G. Characteristics of rapidly solidified Cu-10%Sn alloy powders produced by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2011, 54(5): 577–584. doi: 10.1179/1743290110y.0000000002
|
[19] |
ESLAMIAN M, RAK J, ASHGRIZ N. Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization[J]. Powder Technology, 2008, 184(1): 11–20. doi: 10.1016/j.powtec.2007.07.045
|
[20] |
刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究[J]. 稀有金属材料与工程, 2021, 50(5): 1767–1774.
LIU Y J, HU Q, ZHAO X M, et al. Investigation of Centrifugal Atomization Technology of High Fluidity Aluminium Alloy Powder for Additive Manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1767–1774.
|
[21] |
PLOOKPHOL T, WISUTMETHANGOON S, GONSRANG S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization[J]. Powder Technology, 2011, 214(3): 506–512. doi: 10.1016/j.powtec.2011.09.015
|
[22] |
ZHANG L P, ZHAO Y Y. Particle size distribution of tin powder produced by centrifugal atomisation using rotating cups[J]. Powder Technology, 2017, 318: 62–67. doi: 10.1016/j.powtec.2017.05.038
|
[23] |
ZHAO Y Y. Analysis of flow development in centrifugal atomization: part I. Film thickness of a fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 959–971. doi: 10.1088/0965-0393/12/5/013
|
[24] |
ZHAO Y Y. Analysis of flow development in centrifugal atomization: part II. Disintegration of a non-fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 973–983. doi: 10.1088/0965-0393/12/5/014
|
[25] |
ZHAO Y Y. Considerations in designing a centrifugal atomiser for metal powder production[J]. Materials & Design, 2006, 27(9): 745–750. doi: 10.1016/j.matdes.2005.01.011
|
[26] |
ALEJANDRA CEGARRA SALGES S, PIJUAN J, HERNÁNDEZ R, et al. Effect of processing parameters on copper powder produced by novel hybrid atomisation technique[J]. Powder Metallurgy, 2020, 63(2): 142–148. doi: 10.1080/00325899.2020.1724431
|
[27] |
WANG D X, LING X, PENG H, et al. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9267–9275. doi: 10.1021/acs.iecr.6b01428
|
[28] |
王东祥, 凌祥, 彭浩, 等. 转盘表面黏性薄液膜稳态流动特性数值模拟[J]. 化工学报, 2017, 68(6): 2321–2327. DOI: 10.11949/j.issn.0438-1157.20170040
WANG D X, LING X, PENG H, et al. Numerical simulation of stable flow dynamics of viscous film on spinning disk surface[J]. CIESC Journal, 2017, 68(6): 2321–2327. doi: 10.11949/j.issn.0438-1157.20170040
|
[29] |
王东祥, 崔政伟, 俞建峰, 等. 牛顿型黏性物料转盘离心雾化成粒特性[J]. 食品与机械, 2018, 34(10): 75–80. DOI: 10.13652/j.issn.1003-5788.2018.10.016
WANG D X, CUI Z W, YU J F, et al. Particle characteristics of centrifugal atomization by rotary disk for Newtonian viscous fluid[J]. Food & Machinery, 2018, 34(10): 75–80. doi: 10.13652/j.issn.1003-5788.2018.10.016
|
[30] |
WANG D X, LING X, PENG H, et al. High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag[J]. Applied Thermal Engineering, 2017, 125: 846–855. doi: 10.1016/j.applthermaleng.2017.07.075
|
[31] |
XU J X, CHEN C Y, SHEN L Y, et al. Atomization mechanism and powder morphology in laminar flow gas atomization[J]. Acta Physica Sinica, 2021, 70(14): 140201. doi: 10.7498/aps.70.20202071
|
[32] |
HINZE J O, MILBORN H. Atomization of liquids by means of a rotating cup[J]. Journal of Applied Mechanics, 1950, 17(2): 145–153. doi: 10.1115/1.4010093
|
[33] |
CHAMPAGNE B, ANGERS R. Fabrication of powders by the rotating electrode process[J]. International Journal of Powder Metallurgy, 1980, 16(4): 359–365.
|
[34] |
CHAMPAGNE B, ANGERS R. REP atomization mechanisms[J]. PMI Powder Metallurgy International, 1984, 16: 125–128.
|
[35] |
WALTON W H, PREWETT W C. The production of sprays and mists of uniform drop size by means of spinning disc type sprayers[J]. Proceedings of the Physical Society. Section B, 1949, 62(6): 341–350. doi: 10.1088/0370-1301/62/6/301
|
[36] |
CHAMPAGNE B, ANGERS R. Size distribution of powders atomized by the rotating electrode process[J]. Modern Development in Powder Metallurgy, 1980, 12: 83–104.
|
[37] |
DUNKLEY J J, ADERHOLD D. Centrifugal atomization of metal powders[J]. Advances in Powder Metallurgy and Particulate Materials, 2007, 1: 2–8.
|
[38] |
TORNBERG C. Gas Efficiency in different atomization systems[J]. Advances in Powder Metallurgy & Particulate Materials, 1992, 1: 127–135.
|
[39] |
国为民, 陈生大, 冯涤. 等离子旋转电极法制取镍基高温合金粉末工艺的研究[J]. 航空工程与维修, 1999(5): 44–46. DOI: 10.3969/j.issn.1672-0989.1999.05.019
GUO W M, CHEN S D, FENG D. Study on process on nickel superalloy powder by the plasmarotation electrode[J]. Aviation Engineering & Maintenance, 1999(5): 44–46. doi: 10.3969/j.issn.1672-0989.1999.05.019
|
1. |
车兵辉,魏然,曾伟. 风洞CTS试验六自由度机构控制方法研究. 计算机测量与控制. 2018(12): 84-88 .
![]() | |
2. |
贺云,张飞龙,徐志刚,刘哲. 一种基于风洞试验环境的轨迹捕获系统设计. 兵工学报. 2018(12): 2480-2487 .
![]() |