Citation: | QIU Y, YANG Y F, YU D C, et al. Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220085. |
[1] |
郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102–118. DOI: 10.7536/PC161015
ZHENG H K, CHANG S N, ZHAO Y Y. Anti-icing mechanism and application of super-hydrophobic/super-lubricated surfaces[J]. Progress in Chemistry, 2017, 29(1): 102–118. doi: 10.7536/PC161015
|
[2] |
TSAI P, LAMMERTINK R G H, WESSLING M, et al. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures[J]. Physical Review Letters, 2010, 104(11): 116102. doi: 10.1103/PhysRevLett.104.116102
|
[3] |
HOODA A, GOYAT M S, PANDEY J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557. doi: 10.1016/j.porgcoat.2020.105557
|
[4] |
XU Y Q. Theoretical research of wetting transition from cassie state to Wenzel state[C]//Proc of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). 2020. .
|
[5] |
CHU F Q, WU X M, WANG L L. Meltwater evolution during defrosting on superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1415–1421. doi: 10.1021/acsami.7b16087
|
[6] |
CHEN R, JIAO L, ZHU X, et al. Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation[J]. Applied Thermal Engineering, 2018, 144: 945–959. doi: 10.1016/j.applthermaleng.2018.09.011
|
[7] |
HE X, ZHANG B X, WANG S L, et al. The Cassie-to-Wenzel wetting transition of water films on textured surfaces with different topologies[J]. Physics of Fluids, 2021, 33(11): 112006. doi: 10.1063/5.0066106
|
[8] |
TAVAKOLI F, KAVEHPOUR H P. Cold-induced spreading of water drops on hydrophobic surfaces[J]. Langmuir, 2015, 31(7): 2120–2126. doi: 10.1021/la503620a
|
[9] |
WANG L Z, TIAN Z, JIANG G C, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13: 378. doi: 10.1038/s41467-022-28036-x
|
[10] |
LONG Y, QIANG X, JIAN X, et al. In situ investigation of ice formation on surfaces with representative wettability[J]. Applied Surface Science, 2010, 256(22): 6764–6769. doi: 10.1016/j.apsusc.2010.04.086
|
[11] |
SHEN Y Z, XIE X Y, TAO J, et al. Mechanical equilibrium dynamics controlling wetting state transition at low-temperature superhydrophobic array-microstructure surfaces[J]. Coatings, 2021, 11(5): 522. doi: 10.3390/coatings11050522
|
[12] |
SUN J, ZHU P G, YAN X T, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 031403. doi: 10.1063/5.0056377
|
[13] |
HAN YEONG Y, STEELE A, LOTH E, et al. Temperature and humidity effects on superhydrophobicity of nanocomposite coatings[J]. Applied Physics Letters, 2012, 100(5): 053112. doi: 10.1063/1.3680567
|
[14] |
ZHU T, CHENG Y, HUANG J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning[J]. Chemical Engineering Journal, 2020, 399: 125746. doi: 10.1016/j.cej.2020.125746
|
[15] |
MEULER A J, DAVID SMITH J, VARANASI K K, et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3100–3110. doi: 10.1021/am1006035
|
[16] |
DORRER C, RÜHE J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces[J]. Langmuir, 2007, 23(7): 3820–3824. doi: 10.1021/la063130f
|
[17] |
FIHRI A, ABDULLATIF D, BIN SAAD H, et al. Decorated fibrous silica epoxy coating exhibiting anti-corrosion properties[J]. Progress in Organic Coatings, 2019, 127: 110–116. doi: 10.1016/j.porgcoat.2018.09.025
|
[18] |
PENNA M O, SILVA A A, DO ROSÁRIO F F, et al. Organophilic nano-alumina for superhydrophobic epoxy coatings[J]. Materials Chemistry and Physics, 2020, 255: 123543. doi: 10.1016/j.matchemphys.2020.123543
|
[19] |
HUHTAMÄKI T, TIAN X L, KORHONEN J T, et al. Surface-wetting characterization using contact-angle measurements[J]. Nature Protocols, 2018, 13(7): 1521–1538. doi: 10.1038/s41596-018-0003-z
|
[20] |
YUAN Y H, LEE T R. Contact angle and wetting properties[M]//Surface Science Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 3-34. .
|