Citation: | LI B J, ZHANG S L, DONG X Y, et al. Study on evaporation heat transfer characteristics of sessile droplets based on temperature measurement of double layer temperature sensitive paint[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220132. |
[1] |
靳思宇, 李一兴, 翁史烈. 逆流式喷雾场中气液两相流温度测量装置[J]. 实验流体力学, 2008, 22(4): 63–67. DOI: 10.3969/j.issn.1672-9897.2008.04.014
JIN S Y, LI Y X, WENG S L. Device for temperature measurement in counter-current gas-liquid spraying field[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 63–67. doi: 10.3969/j.issn.1672-9897.2008.04.014
|
[2] |
董彬, 孙权, 高春艳, 等. 动力电池喷雾冷却换热特性研究[J]. 工程热物理学报, 2022, 43(6): 1588–1595.
DONG B, SUN Q, GAO C Y, et al. Study on spray cooling heat transfer performance of power battery[J]. Journal of Engineering Thermophysics, 2022, 43(6): 1588–1595.
|
[3] |
XUE S D, XI X, LAN Z, et al. Longitudinal drift behaviors and spatial transport efficiency for spraying pesticide droplets[J]. International Journal of Heat and Mass Transfer, 2021, 177: 121516. doi: 10.1016/j.ijheatmasstransfer.2021.121516
|
[4] |
ZHENG L, CHENG X J, CAO L D, et al. Enhancing pesticide droplet deposition through O/W Pickering Emulsion: Synergistic stabilization by Flower-like ZnO particles and polymer emulsifier[J]. Chemical Engineering Journal, 2022, 434: 134761. doi: 10.1016/j.cej.2022.134761
|
[5] |
SANTANGELO P E, ROMAGNOLI M, PUGLIA M. An experimental approach to evaluate drying kinetics and foam formation in inks for inkjet printing of fuel-cell layers[J]. Experimental Thermal and Fluid Science, 2022, 135: 110631. doi: 10.1016/j.expthermflusci.2022.110631
|
[6] |
TOFAN T, JASEVIČIUS R. Modelling of the motion and interaction of a droplet of an inkjet printing process with physically treated polymers substrates[J]. Applied Sciences, 2021, 11(23): 11465. doi: 10.3390/app112311465
|
[7] |
PAN Z H, WEIBEL J A, GARIMELLA S V. Transport mechanisms during water droplet evaporation on heated substrates of different wettability[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119524. doi: 10.1016/j.ijheatmasstransfer.2020.119524
|
[8] |
TEMBELY M, VADILLO D C, DOLATABADI A, et al. A machine learning approach for predicting the maximum spreading factor of droplets upon impact on surfaces with various wettabilities[J]. Processes, 2022, 10(6): 1141. doi: 10.3390/pr10061141
|
[9] |
WANG F, GAO X, XIAO Y C, et al. Thick exchange layer evaporation model with natural convection effect and evaporation experimental study for multicomponent droplet[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1903–1918. doi: 10.1016/j.cja.2020.02.005
|
[10] |
HAN T, CHOI Y, NA U, et al. Fast nucleation of water by self-arrangement of hydrophilic crystals on a hierarchically structured surface promoting coalescence-induced droplet jumping[J]. Applied Thermal Engineering, 2021, 198: 117444. doi: 10.1016/j.applthermaleng.2021.117444
|
[11] |
JIANG Y N, CHI F X, CHEN Q S, et al. Effect of substrate microstructure on thermocapillary flow and heat transfer of nanofluid droplet on heated wall[J]. Microgravity Science and Technology, 2021, 33(3): 37. doi: 10.1007/s12217-021-09888-2
|
[12] |
LEE H J, CHOI C K, LEE S H. Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123206. doi: 10.1016/j.ijheatmasstransfer.2022.123206
|
[13] |
GIBBONS M J, DI MARCO P, ROBINSON A J. Local heat transfer to an evaporating superhydrophobic droplet[J]. International Journal of Heat and Mass Transfer, 2018, 121: 641–652. doi: 10.1016/j.ijheatmasstransfer.2018.01.007
|
[14] |
TAROZZI L, MUSCIO A, TARTARINI P. Experimental tests of dropwise cooling on infrared-transparent media[J]. Experimental Thermal and Fluid Science, 2007, 31(8): 857–865. doi: 10.1016/j.expthermflusci.2006.09.005
|
[15] |
RICHARDS C D, RICHARDS R F. Transient temperature measurements in a convectively cooled droplet[J]. Experiments in Fluids, 1998, 25(5): 392–400. doi: 10.1007/s003480050246
|
[16] |
HASHIMI H A, KIM J. Quantum dot temperature sensor ab initio test: droplet vaporization heat transfer[C]// Proceedings of the ASME 2016 Heat Transfer Summer Conference. 2016.
|
[17] |
LIU T S, SULLIVAN J P. Pressure and temperature sensitive paints[M]. Berlin: Springer, 2005.
|
[18] |
Liu T S, CAMPBELL B T, SULLIVAN J P. Fluorescent paint for measurement of heat transfer in shock - turbulent boundary layer interaction[J]. Experimental Thermal and Fluid Science, 1995, 10(1): 101–112. doi: 10.1016/0894-1777(94)00068-J
|
[19] |
LIU T S, CAMPBELL B T, BURNS S P, et al. Temperature- and pressure-sensitive luminescent paints in aerodynamics[J]. Applied Mechanics Reviews, 1997, 50(4): 227–246. doi: 10.1115/1.3101703
|
[20] |
FRANCOM M, KIM J. Experimental investigation into the heat transfer mechanism of oscillating heat pipes using temperature sensitive paint[J]. Journal of Heat Transfer, 2021, 143(4): 041901. doi: 10.1115/1.4049512
|
[21] |
HIRAI Y, MALLETTE A, NISHIO Y, et al. Visualization of icing of supercooled water using Tb(III)-based temperature-sensitive paint[J]. Sensors and Actuators A:Physical, 2019, 285: 599–602. doi: 10.1016/j.sna.2018.11.051
|
[22] |
AL HASHIMI H, HAMMER C F, LEBON M T, et al. Phase-change heat transfer measurements using temperature-sensitive paints[J]. Journal of Heat Transfer, 2018, 140(3): 031601. doi: 10.1115/1.4038135
|
[23] |
张扣立, 周嘉穗, 孔荣宗, 等. CARDC激波风洞TSP技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. DOI: 10.7638/kqdlxxb-2015.0151
ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151
|
[24] |
刘旭, 彭迪, 刘应征. 温敏涂料TSP热流密度测量方法及应用[J]. 气体物理, 2020, 5(5): 1–12. DOI: 10.19527/j.cnki.2096-1642.0872
LIU X, PENG D, LIU Y Z. Methods and applications of heat flux measurement using TSP[J]. Physics of Gases, 2020, 5(5): 1–12. doi: 10.19527/j.cnki.2096-1642.0872
|
[25] |
LIU L, ZHANG K Q, LIU H Y, et al. Experimental study on the interfacial heat transfer of sessile droplet evaporation using temperature-sensitive paint[J]. Experimental Thermal and Fluid Science, 2021, 128: 110436. doi: 10.1016/j.expthermflusci.2021.110436
|
[26] |
张凯祺. 基于温敏漆的液滴撞击壁面蒸发过程传热特性研究[D]. 保定: 华北电力大学, 2021.
ZHANG K Q. Study of interfacial heat transfer on droplet impacting heated surface evaporation using temperature sensitive paint[D]. Bao Ding: North China Electric Power University, 2021. doi: 10.27139/d.cnki.ghbdu.2021.000203.
|
[27] |
LORENZ M, HORBACH T, SCHULZ A, et al. A novel measuring technique utilizing temperature sensitive paint—measurement procedure, validation, application, and comparison with infrared thermography[J]. Journal of Turbomachinery, 2013, 135(3): 031003. doi: 10.1115/1.4006638
|
[28] |
MOAVENI S, KIM J. An inverse solution for reconstruction of the heat transfer coefficient from the knowledge of two temperature values in a solid substrate[J]. Inverse Problems in Science and Engineering, 2017, 25(1): 129–153. doi: 10.1080/17415977.2016.1161035
|
[29] |
GIBBONS M J, DI MARCO P, ROBINSON A J. Heat flux distribution beneath evaporating hydrophilic and superhydrophobic droplets[J]. International Journal of Heat and Mass Transfer, 2020, 148(C): 119093. doi: 10.1016/j.ijheatmasstransfer.2019.119093
|
[30] |
GUGGILLA G, NARAYANASWAMY R, PATTAMATTA A. An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface[J]. Experimental Thermal and Fluid Science, 2020, 110: 109916. doi: 10.1016/j.expthermflusci.2019.109916
|
1. |
李强,操小龙. 超声速进气道压力估算方法及验证. 航空工程进展. 2020(06): 894-899 .
![]() |