Turn off MathJax
Article Contents
LIU W J, LING Z W, DENG X M, et al. Research on anti time-varying disturbance control of wind tunnel flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230093
Citation: LIU W J, LING Z W, DENG X M, et al. Research on anti time-varying disturbance control of wind tunnel flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230093

Research on anti time-varying disturbance control of wind tunnel flow field

doi: 10.11729/syltlx20230093
  • Received Date: 2023-07-20
  • Accepted Date: 2023-09-27
  • Rev Recd Date: 2023-09-25
  • Available Online: 2023-11-06
  • The time-varying disturbance problems are common in wind tunnel flow field control, the most typical of which is the disturbance of Mach number control caused by angle of attack in the transonic continuous sweep angle of attack test. In order to improve the accuracy of flow field control in the presence of time-varying disturbance, a novel feed-forward feedback composite control scheme is innovatively proposed. The feed-forward control is based on phase Lead Correction based Incremental Extend State Observer(LIESO), and the feedback control is based on the incremental Proportional-Integral(PI) control. The research on the transonic continuous sweep angle of attack test in the 1.2 m trans-supersonic wind tunnel is carried out to verify the composite control method. The test results show that: the LIESO + PI composite control method has remarkable effect on time-varying disturbance suppression, and good robustness, good adaptability to different model blockage and test Mach numbers, and has good engineering application value.
  • loading
  • [1]
    谢艳, 李平, 蒋鸿, 等. 2.4m跨声速风洞连续变迎角试验关键技术研究[J]. 实验流体力学, 2014, 28(1): 89–93. doi: 10.11729/syltlx20120182

    XIE Y, LI P, JIANG H, et al. The key technique research on continuous sweeping angle of attack test in 2.4 × 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(1): 89–93. doi: 10.11729/syltlx20120182
    [2]
    袁平, 易凡, 肖宇航, 等. 面向攻角变化的风洞流场模型预测控制器[J]. 控制与决策, 2018, 33(6): 1026–1032. doi: 10.13195/j.kzyjc.2017.0164

    YUAN P, YI F, XIAO Y H, et al. Orienting of attack angle based model prediction controller of wind tunnel flow[J]. Control and Decision, 2018, 33(6): 1026–1032. doi: 10.13195/j.kzyjc.2017.0164
    [3]
    ZHANG J, YUAN P, CHIN K S. Model predictive control for the flow field in an intermittent transonic wind tunnel[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 324–338. doi: 10.1109/TAES.2017.2756538
    [4]
    易凡, 李欣蕊, 杜宁, 等. 基于迭代学习的风洞马赫数控制方法[J]. 控制工程, 2020, 27(1): 109–113. doi: 10.14107/j.cnki.kzgc.20190333

    YI F, LI X R, DU N, et al. Iterative learning based control for wind tunnel Mach number[J]. Control Engineering of China, 2020, 27(1): 109–113. doi: 10.14107/j.cnki.kzgc.20190333
    [5]
    SOETERBOEK R A M, PELS A F, VERBRUGGEN H B, et al. A predictive controller for the Mach number in a transonic wind tunnel[J]. IEEE Control Systems Magazine, 1991, 11(1): 63–72. doi: 10.1109/37.103359
    [6]
    NGUYEN N, ARDEMA M. Predictive optimal control of a hyperbolic distributed model for a wind tunnel[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3): 626–634. doi: 10.2514/1.15381
    [7]
    SUTCLIFFE P, RENNIE M R. Neural network model predictive control of wind tunnel test conditions[C]//Proceedings of the 54th AIAA Aerospace Sciences Meeting. 2016. doi: 10.2514/6.2016-1150
    [8]
    吕伍, 毛志忠, 袁平, 等. 基于模型迁移方法的精炼炉钢水终点硫含量预报[J]. 东北大学学报(自然科学版), 2014, 35(3): 314–317. doi: 10.3969/j.issn.1005-3026.2014.03.003

    LYU W, MAO Z Z, YUAN P, et al. Ladle furnace end point sulphur content prediction model based on model migration method[J]. Journal of Northeastern University (Natural Science), 2014, 35(3): 314–317. doi: 10.3969/j.issn.1005-3026.2014.03.003
    [9]
    袁平, 王福利, 毛志忠. 基于案例推理的电弧炉终点预报[J]. 东北大学学报(自然科学版), 2011, 32(12): 1673–1676. doi: 10.12068/j.issn.1005-3026.2011.12.001

    YUAN P, WANG F L, MAO Z Z. CBR based endpoint prediction of EAF[J]. Journal of Northeastern University (Natural Science), 2011, 32(12): 1673–1676. doi: 10.12068/j.issn.1005-3026.2011.12.001
    [10]
    刘为杰, 何帆, 凌忠伟. 2.4m跨声速风洞流场预测自抗扰控制[J]. 航空学报, 2019, 40(11): 123154. doi: 10.7527/DS1000-6893.2019.23154

    LIU W J, HE F, LING Z W. Predictive active disturbance rejection control for flow field in 2.4 m transonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 123154. doi: 10.7527/DS1000-6893.2019.23154
    [11]
    周波, 高川, 杨洋. 2m超声速风洞流场变速压控制方法研究[J]. 实验流体力学, 2019, 33(6): 72–77. doi: 10.11729/syltlx20180133

    ZHOU B, GAO C, YANG Y. Study on varying dynamic pressure control of flow field in 2m supersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 72–77. doi: 10.11729/syltlx20180133
    [12]
    芮伟, 易凡, 杜宁, 等. 2.4m跨声速风洞颤振试验流场控制技术研究[J]. 实验流体力学, 2012, 26(6): 83–86. doi: 10.3969/j.issn.1672-9897.2012.06.018

    RUI W, YI F, DU N, et al. Study on flow field control technique of flutter test in 2.4m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6): 83–86. doi: 10.3969/j.issn.1672-9897.2012.06.018
    [13]
    韩京清. 自抗扰控制技术[J]. 前沿科学, 2007, 1(1): 24–31. doi: 10.3969/j.issn.1673-8128.2007.01.004

    HAN J Q. Auto disturbances rejection control technique[J]. Frontier Science, 2007, 1(1): 24–31. doi: 10.3969/j.issn.1673-8128.2007.01.004
    [14]
    HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900–906. doi: 10.1109/TIE.2008.2011621
    [15]
    GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//Proc of the Proceedings of the 2003 American Control Conference. 2003. doi: 10.1109/ACC.2003.1242516
    [16]
    ZHAO S, GAO Z Q. Active disturbance rejection control for non-minimum phase systems[C]//Proceedings of the 29th Chinese Control Conference. 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (102) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return