Liang B, Zhao J B, Fu Z L, et al. Experimental technique in wind tunnel for mass injection of ablative gas flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230013.
Citation: Liang B, Zhao J B, Fu Z L, et al. Experimental technique in wind tunnel for mass injection of ablative gas flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230013.

Experimental technique in wind tunnel for mass injection of ablative gas flow

More Information
  • Received Date: February 15, 2023
  • Revised Date: September 12, 2023
  • Accepted Date: October 18, 2023
  • Available Online: June 04, 2024
  • The mass ejection of ablating gas flow will affect the stability of boundary layer and transition location during thermal protection materials ablation of reentry vehicle. In this paper, the experimental method of ablative gas mass injection in wind tunnel is studied. According to the principle of pipeline gas flow and porous material permeability, the mass flow of ablative gas is simulated. The mass flow of gas is controlled by proportional valve and flow meter, and the transition location is measured by infrared imaging technology. The experimental research is carried out on the blunt cone model under Ma=6.0 and Re=2.5 × 107m−1 conditions. The results indicated that the technology simulates the ablative gas mass injection of reentry vehicle effectively, and the mass injection can promote the transition: the transition location moves forward with the increasing mass flow of ejected gas. The experimental technique can provide important data for the overall optimization and design of related aircraft.

  • [1]
    CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379–402. doi: 10.1146/annurev-fluid-010518-040258
    [2]
    莫凡, 高振勋, 蒋崇文, 等. 高温化学非平衡效应对高超声速飞行器气动力/热影响的数值研究进展[J]. 中国科学: 物理学 力学 天文学, 2021, 51(10): 26-41.

    MO F, GAO Z X, JIANG C W, et al. Progress in the numerical study on the aerodynamic and thermal characteristics of hypersonic vehicles: high-temperature chemical non-equilibrium effect[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(10): 26-41. doi: 10.1360/SSPMA-2021-0110
    [3]
    李瑾, 苏伟, 黄章峰, 等. 质量引射对边界层稳定性的影响[J]. 航空动力学报, 2020, 35(2): 280–293.

    LI J, SU W, HUANG Z F, et al. Effect of mass ejection on boundary layers stability[J]. Journal of Aerospace Power, 2020, 35(2): 280–293.
    [4]
    姚从菊. 再入飞行器烧蚀层内热质传输过程的数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    YAO C J. Numerical simulation of heat and mass transfer in ablation layers of re-entry space vehicles[D]. Harbin: Harbin Institute of Technology, 2007.
    [5]
    姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003.

    JIANG G Q, LIU L Y. Heat transfor of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003.
    [6]
    李志文, 袁海涛, 黄斌, 等. 从总体设计角度透视高超声速飞行器边界层转捩问题[J]. 空气动力学学报, 2021, 39(4): 26–38. DOI: 10.7638/kqdlxxb-2020.0061

    LI Z W, YUAN H T, HUANG B, et al. The hypersonic boundary-layer transition: a perspective from the view of system design[J]. Acta Aerodynamica Sinica, 2021, 39(4): 26–38. doi: 10.7638/kqdlxxb-2020.0061
    [7]
    ILIFF K, SHAFER M. A comparison of hypersonic flight and perdiction results[C]//3th Aerospace Sciences Meeting. 1993.
    [8]
    LEES L, CHAPKIS R L. Surface mass injection at supersonic and hypersonic speeds as a problem in turbulent mixing: part I. two-dimensional flow[J]. AIAA Journal, 1969, 7(4): 671–680. doi: 10.2514/3.5185
    [9]
    MOORE D R, STALMACH C J, POPE T C. Dynamic stability wind-tunnel tests of a 10°cone with simulated ablation at M = 17[J]. AIAA Paper, 1966: 66-757.
    [10]
    JOHNSON H, GRONVALL J, CANDLER G. Reacting hypersonic boundary layer stability with blowing and suction[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 938. doi: 10.2514/6.2009-938
    [11]
    SAWAYA J, SASSANIS V, YASSIR S, et al. Assessment of the impact of two-dimensional wall deformation shape on high-speed boundary-layer disturbances[J]. AIAA Journal, 2018, 56(12): 4787–4800. doi: 10.2514/1.J057045
    [12]
    WANG X W, ZHONG X L, MA Y B. Response of a hypersonic boundary layer to wall blowing-suction[J]. AIAA Journal, 2011, 49(7): 1336–1353. doi: 10.2514/1.J050173
    [13]
    陆昌根, 沈露予. 壁面局部吹吸边界层感受性的数值研究[J]. 物理学报, 2015, 64(22): 318–326. DOI: 10.7498/aps.64.224702

    LU C G, SHEN L Y. Numerical study on boundary-layer receptivity with localized wall blowing/suction[J]. Acta Physica Sinica, 2015, 64(22): 318–326. doi: 10.7498/aps.64.224702
    [14]
    肖雨, 石义雷, 粟斯尧. 质量引射对高超声速边界层影响研究[C]//第十九届中国空气动力学物理气体动力学学术交流会摘要集. 2019.
    [15]
    粟斯尧, 石义雷, 柳森等. 头部质量引射对气动加热影响数值研究[C]//第十九届全国高超声速气动力/热学术交流会论文集. 2020.
    [16]
    王玉春, 姜楠, 夏振炎, 等. 吹吸扰动对壁湍流边界层摩擦阻力的影响[J]. 航空动力学报, 2009, 24(10): 2163–2168.

    WANG Y C, JIANG N, XIA Z Y, et al. Effect of blowing and suction on friction drag of wall turbulent boundary layer[J]. Journal of Aerospace Power, 2009, 24(10): 2163–2168.
    [17]
    杨升科, 郭奇灵, 罗振兵, 等. 基于合成射流的机翼溢流冰防护实验[J]. 航空动力学报, 2020, 35(11): 2364–2370.

    YANG S K, GUO Q L, LUO Z B, et al. Experiment on airfoil runback ice protection based on synthetic jet[J]. Journal of Aerospace Power, 2020, 35(11): 2364–2370.
    [18]
    王磊, 杜海, 李秋实, 等. 环量控制机翼增升及滚转控制特性研究[J]. 空气动力学学报, 2021, 39(1): 43–51.

    WANG L, DU H, LI Q S, et al. Research on the lift-enhancement and roll control characteristics of a circulation control wing[J]. Acta Aerodynamica Sinica, 2021, 39(1): 43–51.
    [19]
    周述光, 国义军, 贺立新, 等. 再入弹头三维非对称烧蚀外形模拟[J]. 航空学报, 2017, 38(12): 121397.

    ZHOU S G, GUO Y J, HE L X, et al. Simulation of 3D asymmetric ablation shape of reentry missile[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 121397.
    [20]
    BAKER R. Low temperature ablator nosetip shape change at angle of attack[C]//Proc of the 10th Aerospace Sciences Meeting. 1972: 90. doi: 10.2514/6.1972-90
    [21]
    陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. DOI: 10.11729/syltlx20180172

    CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
    [22]
    吴树海. 透气钢的制备及性能分析[D]. 泉州: 华侨大学, 2016.

    WU S H. Study on the preparation and performance of the breathable steel[D]. Quanzhou: Huaqiao University, 2016.
    [23]
    全国工业过程测量控制和自动化标准化技术委员会. 用安装在圆形截面管道中的差压装置测量满管流体流量: GB/T 2624.1—2006 [S]. 北京, 中国标准出版社, 2006.
    [24]
    中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动力试验[M]. 北京: 国防工业出版社, 2004.
    [25]
    李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010.

    LI Z F. Wind tunnel special test technology[M]. Beijing: Aviation Industry Press, 2010.
    [26]
    MORKOVIN M V. Transition in open flow systems-a reassessment[J]. Bulletin of the American Physical Society, 1994, 39(9): 1882.
    [27]
    沙心国, 郭跃, 纪锋, 等. 高超声速圆锥边界层失稳条纹结构实验研究[J]. 空气动力学学报, 2020, 38(1): 143–147.

    SHA X G, GUO Y, JI F, et al. Experimental study on instability streak structure over a hypersonic cone[J]. Acta Aerodynamica Sinica, 2020, 38(1): 143–147.
    [28]
    范洁川. 风洞试验手册[M]. 北京: 航空工业出版社, 2002.

    FAN J C. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002.
    [29]
    ZHAO X J, JIN X, QING S. Experiment researches on the location of transition onset in the hypersonic wind tunnel[C]//Proc of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2010: 674. doi: 10.2514/6.2010-674
    [30]
    王勋年, 陈鹏, 耿子海. 边界层转捩红外热图测量试验技术研究[C]//全国低跨超声速空气动力学文集(第二卷), 2003.
    [31]
    耿子海, 何显中, 王勋年, 等. 红外成像非接触转捩测量低速风洞试验技术研究[J]. 实验流体力学, 2010, 24(6): 77–82. DOI: 10.3969/j.issn.1672-9897.2010.06.017

    GENG Z H, HE X Z, WANG X N, et al. Non-intrusive test technique investigation of transition measurement with infrared image in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 77–82. doi: 10.3969/j.issn.1672-9897.2010.06.017
    [32]
    何显中, 袁强, 黄明其, 等. 红外成像技术在金属模型转捩测量中的应用[J]. 红外与激光工程, 2016, 45(6): 93–97.

    HE X Z, YUAN Q, HUANG M Q, et al. Application of infrared imaging technology in bounder layer transition measurement for metal model[J]. Infrared and Laser Engineering, 2016, 45(6): 93–97.

Catalog

    Article Metrics

    Article views (57) PDF downloads (21) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close