Turn off MathJax
Article Contents
CHEN W, WANG L, WU Y. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220099
Citation: CHEN W, WANG L, WU Y. Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220099

Application of a calibration-free wavelength modulation spectroscopy in the diagnosis of high-enthalpy flow field

doi: 10.11729/syltlx20220099
  • Received Date: 2022-09-19
  • Accepted Date: 2022-12-23
  • Rev Recd Date: 2022-11-08
  • Available Online: 2023-06-05
  • Parameters of the high-temperature gas in the high-enthalpy flow field arean important basis for analyzing the thermochemical characteristics of the high-enthalpy flow and its interaction mechanism with exothermic materials. However, due to the high temperature of the flow field and severe chemical reaction, the measurement signals of these parameters are difficult to calibrate, which makes quantitative measurement difficult all the time. Wavelength Modulation Spectroscopy (WMS) is a kind of Tunable Diode Laser Absorption Spectroscopy (TDLAS), which has stronger anti-interference ability and is more suitable for complex environment application compared with the direct absorption method. A calibration-freed data processing method of WMS has been realized by fitting the measured harmonic signal with the theoretical harmonic signal, and applied in the diagnosis of the high frequency induction plasma flow and thearc-heated flow. The results show that the temperature and electronic density in the plasma flow resolved by the WMS are very close to those measured by the direct TDLAS, and the relative error of the specific enthalpy in the arc-heated flow between the WMS and the energy balance method is about 10%, which indicates that the free-calibrated WMS is reliable and can be used as an effective tool in the quantitative measurement of the high-enthalpy flow.
  • loading
  • [1]
    聂伟, 阚瑞峰, 杨晨光, 等. 可调谐二极管激光吸收光谱技术的应用研究进展[J]. 中国激光, 2018, 45(9): 9–29.

    NIE W, KAN R F, YANG C G, et al. Research progress on the application of tunable diode laser absorption spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(9): 9–29.
    [2]
    胡尚炜, 殷可为, 涂晓波, 等. 基于中红外吸收光谱技术测量高温流场CO浓度研究[J]. 实验流体力学, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126

    HU S W, YIN K W, TU X B, et al. Measurement of CO concentration in flat flame based on mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 60–66. doi: 10.11729/syltlx20190126
    [3]
    欧东斌, 陈连忠, 董永晖, 等. 电弧风洞中基于TDLAS的气体温度和氧原子浓度测试[J]. 实验流体力学, 2015, 29(3): 62–67. doi: 10.11729/syltlx20140071

    OU D B, CHEN L Z, DONG Y H, et al. Measurements of gas temperature and atomic oxygen density in the arc-heated wind tunnel based on TDLAS[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 62–67. doi: 10.11729/syltlx20140071
    [4]
    曾徽, 余西龙, 李飞, 等. 中红外吸收光谱测量激波风洞自由流中NO浓度和温度[J]. 实验流体力学, 2015, 29(2): 79–83. doi: 10.11729/syltlx20140044

    ZENG H, YU X L, LI F, et al. Nitric oxide concentration and temperature measurement for shock tunnel free stream using mid-infrared absorption spectroscopy[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2): 79–83. doi: 10.11729/syltlx20140044
    [5]
    SUPPLEE J M, WHITTAKER E A, LENTH W. Theoretical description of frequency modulation and wavelength modulation spectroscopy[J]. Applied Optics, 1994, 33(27): 6294–6302. doi: 10.1364/AO.33.006294
    [6]
    贾良权, 刘文清, 阚瑞峰, 等. 波长调制-TDLAS技术测量风洞中氧气流速方法研究[J]. 中国激光, 2015, 42(7): 312–319.

    JIA L Q, LIU W Q, KAN R F, et al. Study on oxygen velocity measurement in wind tunnel by wavelength modulation- TDLAS technology[J]. Chinese Journal of Lasers, 2015, 42(7): 312–319.
    [7]
    GOLDENSTEIN C S, SCHULTZ I A, JEFFRIES J B, et al. TDL absorption sensor for temperature measurements in high-pressure and high-temperature gases[J]. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2012: 1061. doi: 10.2514/6.2012-1061
    [8]
    朱晓睿, 卢伟业, 饶雨舟, 等. TDLAS直接吸收法测量CO2的基线选择方法[J]. 中国光学, 2017, 10(4): 455–461. doi: 10.3788/co.20171004.0455

    ZHU X R, LU W Y, RAO Y Z, et al. Selection of baseline method in TDLAS direct absorption CO2 measurement[J]. Chinese Optics, 2017, 10(4): 455–461. doi: 10.3788/co.20171004.0455
    [9]
    陈卫, 伍越, 黄祯君, 等. 基于TDLAS的电弧风洞流场Cu组分监测[J]. 航空学报, 2019, 40(8): 122841.

    CHEN W, WU Y, HUANG Z J, et al. Monitoring copper species in flow of arc-heated wind tunnel based on TDLAS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122841.
    [10]
    阎杰, 翟畅, 王晓牛, 等. L-M非线性拟合的TDLAS氧气测量研究[J]. 光谱学与光谱分析, 2015, 35(6): 1497–1500. doi: 10.3964/j.issn.1000-0593(2015)06-1497-04

    YAN J, ZHAI C, WANG X N, et al. The research of oxygen measurement by TDLAS based on levenberg-marquardt nonlinear fitting[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1497–1500. doi: 10.3964/j.issn.1000-0593(2015)06-1497-04
    [11]
    WANG K Y, SHAO J, SHAO L G, et al. A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment[J]. Chinese Physics B, 2021, 30(5): 262–267.
    [12]
    王振, 杜艳君, 丁艳军, 等. 基于波长调制-直接吸收光谱方法的CO分子1567nm处谱线参数高精度标定[J]. 物理学报, 2020, 69(6): 89–96.

    WANG Z, DU Y J, DING Y J, et al. High precision calibration of spectral parameters of CO at 1567 nm based on wavelength modulation-directabsorption spectroscopy[J]. Acta Physica Sinica, 2020, 69(6): 89–96.
    [13]
    ZHU Y K, ZHOU B, WANG Y H, et al. Research on Calibration-Free Fixed-Point Wavelength Modulation Spectroscopy Based on Wavenumber Drift-Correction Algorithm[J]. Acta Optica Sinica, 2019, 39(8): 0830001. doi: 10.3788/AOS201939.0830001
    [14]
    CHEN W, WU Y, LUO Y. Broadening-independent demodulation for wavelength modulation spectroscopy based on even-order harmonics[J]. Spectroscopy Letters, 2018, 51(1): 61–66. doi: 10.1080/00387010.2017.1422523
    [15]
    臧益鹏, 许振宇, 夏晖晖, 等. 基于免标定波长调制技术的高温谱线参数测量方法[J]. 中国激光, 2020, 47(10): 278–285.

    ZANG Y P, XU Z Y, XIA H H, et al. Method for measuring high temperature spectral line parameters based on calibration-free wavelength modulation technology[J]. Chinese Journal of Lasers, 2020, 47(10): 278–285.
    [16]
    SWINEHART D F. The Beer-Lambert Law[J]. J. Chem. Educ, 1962, 39(7): 333. doi: 10.1021/ed039p333
    [17]
    NIST Atomic Spectra Database (version 5.9) [EB/OL]. [2022-09-19]. https://www.nist.gov/pml/atomic-spectra-database.
    [18]
    沃尔夫冈·戴姆特瑞德. 激光光谱学 [M]. 姬扬, 译. 北京: 科学出版社, 2012.
    [19]
    GRIEM H R. Spectral line broadening by plasmas[M]. New York: Academic Press, 1974.
    [20]
    曾徽, 陈连忠, 林鑫, 等. 电弧加热器高温流场激光吸收光谱诊断[J]. 实验流体力学, 2017, 31(4): 28–33. doi: 10.11729/syltlx20160179

    ZENG H, CHEN L Z, LIN X, et al. Laser absorption spectroscopy diagnostics in the arc-heater of an arcjet facility[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 28–33. doi: 10.11729/syltlx20160179
    [21]
    罗跃, 周玮, 杨鸿, 等. 电弧加热器湍流平板试验流场计算分析[J]. 实验流体力学, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088

    LUO Y, ZHOU W, YANG H, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088
    [22]
    朱新新, 隆永胜, 石友安, 等. 稳态焓探针的优化设计与试验验证[J]. 实验流体力学, 2020, 34(4): 87–93. doi: 10.11729/syltlx20190062

    ZHU X X, LONG Y S, SHI Y A, et al. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87–93. doi: 10.11729/syltlx20190062
    [23]
    朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11.

    ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11.
    [24]
    MATSUI M, KOMURASAKI K, HERDRICH G, et al. Enthalpy measurement in inductively heated plasma generator flow by laser absorption spectroscopy[J]. AIAA Journal, 2005, 43(9): 2060–2064. doi: 10.2514/1.14128
    [25]
    MATSUI M, KOMURASAKI K, ARAKAWA Y, et al. Enthalpy measurement of inductively heated airflow[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 155–158. doi: 10.2514/1.34369
    [26]
    BABIKIAN D, PARK C, RAICHE G. Spectroscopic determination of enthalpy in an arc-jet wind tunnel[C]//Proc of the 33rd Aerospace Sciences Meeting and Exhibit. 1995. doi: 10.2514/6.1995-712
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views (148) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return