LI X L, ZHANG Y H, LV C, et al. Hypersonic boundary-layer instability measurement using multi-point focused laser differential interferometry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240010.
Citation: LI X L, ZHANG Y H, LV C, et al. Hypersonic boundary-layer instability measurement using multi-point focused laser differential interferometry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240010.

Hypersonic boundary-layer instability measurement using multi-point focused laser differential interferometry

More Information
  • Received Date: April 17, 2024
  • Revised Date: May 14, 2024
  • Accepted Date: June 03, 2024
  • Available Online: September 04, 2024
  • Focused laser differential interferometer (FLDI) has been widely used in the spatial measurement of hypersonic boundary layer instability. However, at present, the FLDI system used in China can only measure the density change of one or two spatial points at a time, and the experimental measurement along the streamwise direction or normal direction in the boundary layer cannot be carried out efficiently, and the correlation of the density fluctuation signal between the two measuring points obtained from two wind tunnel runs is poor. In this work, a setup of multi-point FLDI measurement system is designed and built, which can simultaneously obtain the second mode instability waves characteristics of multiple measuring points in the hypersonic boundary layer in a single wind tunnel operation period. Based on the Φ 0.25 m low noise Mach 6 hypersonic Ludwieg tube wind tunnel in Huazhong University of Science and Technology (HUST), the instability waves measurement experiment of a sharp cone’s boundary layer with a freestream Reynolds number of 1.19 × 107 m−1 is carried out by using the multi-point FLDI measurement system. The experimental results show that the multi-point FLDI system successfully captures the typical second mode instability waves with the main frequency in the range of 316.4 kHz~322.3 kHz, which is agree with the main frequency 319.3 kHz of those measured by a PCB sensor at almost the same measuring point. Furthermore, through the cross-correlation analysis of the density fluctuation data obtained based on the multi-point FLDI system, it is found that the phase velocity of the instability waves between the adjacent measuring points is the same, which is consistent with the propagation velocity characteristics of the second mode instability waves in the boundary layer. The experimental results verify the data obtained by multi-point FLDI are quiet reliable. Above all, the multi-point FLDI system has the advantages of high efficiency, low cost, high accuracy and high spatial resolution, so it is expected to be applied to the basic research investigation in the future, such as hypersonic boundary layer instability and receptivity mechanism.

  • [1]
    周恒, 张涵信. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题[J]. 空气动力学学报, 2017, 35(2): 151–155. DOI: 10.7638/kqdlxxb-2017.0016

    ZHOU H, ZHANG H X. Two problems in the transition and turbulence for near space hypersonic flying vehicles[J]. Acta Aerodynamica Sinica, 2017, 35(2): 151–155. doi: 10.7638/kqdlxxb-2017.0016
    [2]
    陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. DOI: 10.7638/kqdlxxb-2018.0011

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2018.0011
    [3]
    刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196–212. DOI: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017
    [4]
    余涛, 张威, 张毅锋, 等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学, 2019, 33(5): 70–75. DOI: 10.11729/syltlx20190076

    YU T, ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 70–75. doi: 10.11729/syltlx20190076
    [5]
    熊有德, 余涛, 薛涛, 等. 聚焦激光差分干涉法测量超/高超声速流动的进展[J]. 实验流体力学, 2022, 36(2): 9–20. DOI: 10.11729/syltlx20210126

    XIONG Y D, YU T, XUE T, et al. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 9–20. doi: 10.11729/syltlx20210126
    [6]
    SMEETS G, GEORGE A. Gas-dynamic investigations in a shock tube using a highly sensitive interferometer[R]. No. REPT-14/71, 1973.
    [7]
    SMEETS G. Laser interferometer for high sensitivity measurements on transient phase objects[J]. IEEE Transactions on Aerospace Electronic Systems, 1972, 8(2): 186–190. doi: 10.1109/TAES.1972.309488
    [8]
    SMEETS G. Flow diagnostics by laser interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 1977, AES-13(2): 82–90. doi: 10.1109/taes.1977.308441
    [9]
    SMEETS G, GEORGE A. Laser-differential interferometer applications in gas dynamics[R]. No. REPT-28/73, 1996.
    [10]
    FULGHUM M R. Turbulence measurements in high-speed wind tunnels using focusing laser differential interferometry[D]. State College: The Pennsylvania State University, 2014.
    [11]
    JEWELL J S, PARZIALE N J, LAM K L, et al. Disturbance and phase speed measurements for shock tubes and hypersonic boundary-layer instability[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016: 3112. doi: 10.2514/6.2016-3112
    [12]
    HOUPT A, LEONOV S. Cylindrical focused laser differential interferometer[J]. AIAA Journal, 2021, 59(4): 1142–1150. doi: 10.2514/1.j059750
    [13]
    GRAGSTON M, PRICE T, DAVENPORT K, et al. Linear array focused-laser differential interferometry for single-shot multi-point flow disturbance measurements[J]. Optics Letters, 2021, 46(1): 154–157. doi: 10.1364/OL.412495
    [14]
    DAVENPORT K, GRAGSTON M. Simultaneous turbulent boundary layer velocity profile and scalar turbulence spectra with linear array-FLDI[C]//Proc of the AIAA SciTech 2022 Forum. 2022: 1313. doi: 10.2514/6.2022-1313
    [15]
    JIANG N B, HSU P S, SLIPCHENKO M, et al. Megahertz-rate imaging of hypersonic boundary-layer instabilities in a Mach 10 shock tunnel[J]. AIAA Journal, 2023, 61(2): 534–542. doi: 10.2514/1.j061880
    [16]
    XIONG Y D, YU T, LIN L Q, et al. Nonlinear instability characterization of hypersonic laminar boundary layer[J]. AIAA Journal, 2020, 58(12): 5254–5263. doi: 10.2514/1.j059263
    [17]
    ZHAO J Q, SIMA X H, XIONG Y D, et al. Impact of wavy wall surface on hypersonic boundary-layer instability of sharp cone model[J]. AIAA Journal, 2022, 60(11): 6203–6213. doi: 10.2514/1.j062035
    [18]
    CHENG J Y, HUANG R R, LIU W T, et al. Influence of single roughness element on hypersonic boundary-layer transition of cone[J]. AIAA Journal, 2023, 61(7): 3210–3218. doi: 10.2514/1.j062713
    [19]
    TANG Q, ZHU Y D, CHEN X, et al. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness[J]. Physics of Fluids, 2015, 27(6): 064105. doi: 10.1063/1.4922389
    [20]
    HUANG R R, LIU W T, CHENG J Y, et al. Measurement of hypersonic turbulent boundary layer on a flat plate using cylindrical focused laser differential interferometer[J]. Physics of Fluids, 2023, 35: 035121. doi: 10.1063/5.0141681
    [21]
    HUANG R R, XUE T, WU J. Measurement of the convection velocities in a hypersonic turbulent boundary layer using two-point cylindrical-focused laser differential interferometer[J]. Aerospace, 2024, 11(1): 100. doi: 10.3390/aerospace11010100
    [22]
    LAUFER J. Sound radiation from a turbulent boundary layer[R]. JPL-TR-32-119, 1961.
    [23]
    黄冉冉, 司马学昊, 成江逸, 等. 基于Ludwieg管的高超声速边界层转捩实验[J]. 气体物理, 2021, 6(5): 51–61. DOI: 10.19527/j.cnki.2096-1642.0901

    HUANG R R, SIMA X H, CHENG J Y, et al. Hypersonic boundary-layer transition experiments in Ludwieg tube[J]. Physics of Gases, 2021, 6(5): 51–61. doi: 10.19527/j.cnki.2096-1642.0901
    [24]
    陈久芬, 徐洋, 许晓斌, 等. 7°尖锥高超声速边界层脉动压力实验研究[J]. 实验流体力学, 2023, 37(6): 51–60. DOI: 10.11729/syltlx20210054

    CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51–60. doi: 10.11729/syltlx20210054
    [25]
    李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报, 2024, 45(2): 128627–128627. DOI: 10.7527/S1000-6893.2023.28627

    LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boundary layer instability[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 128627–128627. doi: 10.7527/S1000-6893.2023.28627
    [26]
    STETSON K F, KIMMEL R L. On hypersonic boundary-layer stability[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. doi: 10.2514/6.1992-737
    [27]
    周闯. 绿光半导体激光器单管合束及光纤耦合技术研究[D]. 西安: 西安电子科技大学, 2019.

    ZHOU C. Research on green single emitter diode laser combination and fiber coupling technology[D]. Xi’an: Xidian University, 2019. doi: 10.27389/d.cnki.gxadu.2019.001070
    [28]
    贺光裕, 姜久兴, 刘鹏. 多模光纤弯曲损耗的理论分析[J]. 哈尔滨理工大学学报, 1997, 2(5): 91–96. DOI: 10.15938/j.jhust.1997.05.024

    HE G Y, JIANG J X, LIU P. Theory of losses in bending of multi-mode fibers[J]. Journal of Harbin University of Science and Technology, 1997, 2(5): 91–96. doi: 10.15938/j.jhust.1997.05.024
  • Related Articles

    [1]LIANG Liang, TANG Puhua, LIU Yu. Numerical simulation and experimental measurement of fluid flow field in pipe with capsule robot[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 60-68. DOI: 10.11729/syltlx20200145
    [2]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [3]WU Wei. Study on the internal flow of marine sewage outfalls with PIV system[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 25-32. DOI: 10.3969/j.issn.1672-9897.2013.05.005
    [4]GAO Li-min, WEI Nan, GAO Jie, WU Ya-nan. Image processing of PSP technique in the internal flow[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(1): 93-97. DOI: 10.3969/j.issn.1672-9897.2013.01.017
    [5]LI Qian, WANG Jian-hua, WU Xiang-yu, YANG Shi-jie. An investigation of coolant flow performance within laminated plate (Ⅰ Visualization of complex flow field using PIV technology)[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 18-21. DOI: 10.3969/j.issn.1672-9897.2007.04.004
    [6]ZHANG Jun, ZHANG Zhi-rong, ZHU Jian-liang, XU Feng, LU Lin-zhang, DAI Qin. Investigation of internal flow field of ducted propeller using particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 82-88. DOI: 10.3969/j.issn.1672-9897.2007.02.017
    [7]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
    [8]WANG Jian, HAO Peng-fei, HE Feng. PIV measurement of flow field in a trapezium-cross section micro-channel[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 94-98. DOI: 10.3969/j.issn.1672-9897.2005.03.019
    [9]Study on the field of swirler[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 88-92. DOI: 10.3969/j.issn.1672-9897.2004.04.019
    [10]The application of particle image velocimetry to fluid experimentation in a turbine cascade[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(4): 68-70,83. DOI: 10.3969/j.issn.1672-9897.2003.04.013
  • Cited by

    Periodical cited type(4)

    1. 吕达,张维桐,张鲁民,赵俊波,张石玉,苏浩秦. 面对称无尾高超声速飞行器三通道耦合失稳判据. 空气动力学学报. 2023(07): 74-83 .
    2. 王延灵,冯帅,卜忱,沈彦杰,陈昊,芦士光. 基于虚拟飞行的混合翼身融合布局操稳特性. 北京航空航天大学学报. 2023(09): 2337-2344 .
    3. 张子军,赵彤,孙烨,李宏信. 飞机大迎角飞行问题研究综述. 航空工程进展. 2022(03): 74-85 .
    4. 骞恒浩,石鹏飞,王敏文,王跃萍. 基于自抗扰的翼身融合客机控制器设计. 兵工自动化. 2022(10): 26-31 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (170) PDF downloads (29) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close