Turn off MathJax
Article Contents
Li Z Q,Shi Y L,Liang J,et al. Applicability analysis of Sivells method in nozzle design with high Mach number and low total pressure[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20220045
Citation: Li Z Q,Shi Y L,Liang J,et al. Applicability analysis of Sivells method in nozzle design with high Mach number and low total pressure[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-9. doi: 10.11729/syltlx20220045

Applicability analysis of Sivells method in nozzle design with high Mach number and low total pressure

doi: 10.11729/syltlx20220045
  • Received Date: 2022-05-11
  • Accepted Date: 2022-06-20
  • Rev Recd Date: 2022-06-02
  • Available Online: 2022-11-15
  • At present, the Sivells method is widely used for the design of the inviscid hypersonic axisymmetric nozzle contour. And then, the nozzle contour viscous correction is performed by solving the axisymmetric momentum equation. This design procedure is validated by nozzles in conventional hypersonic wind tunnels and shock wind tunnels, which are operated under high Mach number and high total pressure conditions. Meanwhile, there are few validation studies of this procedure under high Mach number and low total pressure conditions. In this study, the nozzle design procedure based on the Sivells method is used for Mach 6, 8, 10, and 12 nozzle contour design under the low total pressure condition. Furthermore, in order to analyze nozzle flowfields, numerical simulation and wind tunnel experiment are carried out. It can be found that, the flowfields in Mach 6 nozzle and Mach 8 nozzle are consistent with expectation and the jet flowfields are so good that are suitable for test. In contrast, there are some over-expanded areas in the flowfields of Mach 10 nozzle and Mach 12 nozzle, which results in higher Mach number than expectation in those areas. The jet flowfield quality of Mach 10 nozzle is better than that of Mach 12 nozzle. It can be concluded that, under the condition of low total pressure, the Sivells method still works well for Mach 6 nozzle and Mach 8 nozzle design. Meanwhile, the method is less effective when applied to the Mach 10 nozzle and Mach 12 nozzle design.
  • loading
  • [1]
    易仕和, 赵玉新, 何霖. 超声速与高超声速喷管设计[M]. 北京: 国防工业出版社, 2013.

    YI S H, ZHAO Y X, HE L. Supersonic and hypersonic nozzle design[M]. Beijing: National Defense Industry Press, 2013.
    [2]
    SIVELLS J C. 轴对称高超音速风洞喷管的气动设计[J]. 黄昌有, 译. 气动研究与发展,1978:187-199.
    [3]
    长洲秀夫. 高超音速风洞喷管的附面层修正[J]. 王增和, 译. 气动研究与发展,1978:219-241.
    [4]
    毛利浩, 考虑真实气体效应的高超音速风洞喷管设计方法[J]. 王增和, 译. 气动研究与发展, 1978: 175-186.
    [5]
    汪运鹏,姜宗林. 高超声速喷管设计理论与方法[J]. 力学进展,2021,51(2):257-294. doi: 10.6052/1000-0992-20-002

    WANG Y P,JIANG Z L. A review of theories and methods for hypersonic nozzle design[J]. Advances in Mechanics,2021,51(2):257-294. doi: 10.6052/1000-0992-20-002
    [6]
    孙启志. Φ1米高超声速风洞M7、8喷管设计及流场校测[D]. 长沙: 国防科学技术大学, 2005.

    SUN Q Z. Mach number seven and eight nozzle design of the diameter one meter hypersonic wind tunnel and flow field testing[D]. Changsha: National University of Defense Technology, 2005.
    [7]
    陈威男. 马赫数10高超声速风洞喷管型线设计及数值计算[D]. 武汉: 华中科技大学, 2018.

    CHEN W N. Contour design of Mach number 10 hypersonic wind tunnel nozzles and numerical simulation[D]. Wuhan: Huazhong University of Science and Technology, 2018.
    [8]
    龚红明. 0.6米激波风洞马赫数8喷管设计及数值计算[D]. 重庆: 重庆大学, 2015.

    GONG H M. 0.6 m shock tunnel Mach 8 nozzle design and CFD simulation[D]. Chongqing: Chongqing University, 2015.
    [9]
    姜维本. 高超声速试验设备设计[M]. 北京: 国防工业出版社, 2001.

    JIANG W B. Hypersonic Test Facility Design[M]. Beijing: National Defense Industry Press, 2001.
    [10]
    LUKASIEWICZ J. 高超音速实验方法[M]. 董兴德, 译. 北京: 国防工业出版社, 1980.

    LUKASIEWICZ J. Experimental Methods of Hypersonics[M]. Translated by DONG X D. Beijing: National Defense Industry Press, 1980.
    [11]
    POTTER J L, CARDEN W H. Design of axisymmetric contoured nozzles for laminar hypersonic flow[C]// Proc of the 3rd Aerodynamics Testing Conference. 1968. doi: 10.2514/3.29427
    [12]
    何立明, 赵罡, 程邦勤. 气体动力学[M]. 北京: 国防工业出版社, 2009.
    [13]
    SIVELLS J C. Aerodynamic design of axisymmetric hy-personic wind-tunnel nozzles[J]. Journal of Spacecraft and Rockets,1970(7):1292-1299. doi: 10.2514/3.30160
    [14]
    SIVELLS J C. A computer program for the aerodynamic design of axisymmetric and planar nozzles for supersonic and hypersonic wind tunnels[R]. AEDC-TR-78-63, 1978. doi: 10.2139/ssrn.4061508
    [15]
    胡振震,李震乾,石义雷,等. 基于轴线马赫数分布的喷管扩张段无粘型面设计[J]. 实验流体力学,2016,30(4):97-104. doi: 10.11729/syltlx20150115

    HU Z Z,LI Z Q,SHI Y L,et al. Design of nozzle inviscid contour based on axial Mach number distribution[J]. Journal of Experiments in Fluid Mechanics,2016,30(4):97-104. doi: 10.11729/syltlx20150115
    [16]
    MOGER W C, RAMSAY D B. Supersonic axisymmetric nozzle design by mass flow techniques utilizing a digital computer[R]. AEDC-TDR-64-110, 1964. doi: 10.21236/ad0601589
    [17]
    SIVELLS J C, PAYNE R G. A method of calculating turbulent-boundary-layer growth at hypersonic Mach num-bers[R]. AEDC-TR-59-3, 1959. doi: 10.21236/ad0208774
    [18]
    RESHOTKO E, TUCKER M. Approximate calculation of the compressible turbulent boundary-layer with heat transfer and arbitrary pressure gradient[R]. NASA-TN-4154, 1957.
    [19]
    PERSH J. A theoretical investigation of turbulent boundary layer flow with heat transfer at supersonic and hypersonic speeds[R]. NAVORD Report 3854, 1955.
    [20]
    BARTZ D R. An approximate solution compressible turbulent boundary-layer development and convective heat transfer in convergent-divergent nozzles[J]. TRANSACTION OF THE ASME, 1955, 77: 1235-1244.
    [21]
    胡振震,李震乾,陈爱国,等. 高超声速风洞轴对称喷管收缩段设计[J]. 空气动力学学报,2017,35(6):766-771. doi: 10.7638/kqdlxxb-2015.0141

    HU Z Z,LI Z Q,CHEN A G,et al. Contraction design for axis-symmetric nozzles in hypersonic wind tunnel[J]. Acta Aerodynamica Sinica,2017,35(6):766-771. doi: 10.7638/kqdlxxb-2015.0141
    [22]
    POPE A, GOIN K L. 高速风洞试验[M]. 邓振瀛, 李廷林, 译. 北京: 科学出版社, 1980.

    POPE A, GOIN K L. High-speed wind tunnel testing[M]. Translated by DENG Z Y and LI T L. Beijing: Science Press, 1980.
    [23]
    ANDERSON J D. 空气动力学基础(第五版)[M]. 杨永, 宋文萍, 张正科, 等译. 北京: 航空工业出版社, 2014.
    [24]
    ANDERSON J D. . 计算流体力学基础及其应用[M]. 吴颂平, 刘赵淼, 译. 北京: 机械工业出版社, 2007.
    [25]
    周正贵. 计算流体力学基础理论与实际应用[M]. 南京: 东南大学出版社, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(6)

    Article Metrics

    Article views (221) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return