CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(5): 98-106. DOI: 10.11729/syltlx20220030
Citation: CHEN J F, XU Y, JIANG W Q, et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(5): 98-106. DOI: 10.11729/syltlx20220030

Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body

More Information
  • Received Date: March 27, 2022
  • Revised Date: May 12, 2022
  • Accepted Date: May 18, 2022
  • Available Online: November 14, 2022
  • For a lifting body model, the boundary layer transition infrared thermogram measurement experiment was carried out in the conventional hypersonic wind tunnel, and the influence of different unit Reynolds number and Mach number on the lifting body boundary layer transition was studied, which was compared with the calculation results of the eN method. The length of the experimental model is 800 mm, the unit Reynolds number is 0.46 × 107 – 3.94 × 107 m–1, the Mach number is 5 – 8, and the angle of attack is 0°. The transition position and transition front of the boundary layer on the surface of the model are obtained by the large-area infrared thermogram technology. The analysis of the experimental results shows that there are crossflow instability and the second mode transition in the boundary layer of the lifting body. As the unit Reynolds number increases, the crossflow transition effect increases, the temperature rise on the lower and upper surfaces of the model increases, the transition front moves forward, and the transition area expands; as the Mach number increases, the crossflow transition effect gradually weakens and the transition position moves downstream, and the transition area significantly shrinks back. Moreover, the transition N factor at different Mach numbers and unit Reynolds numbers are relatively close, but the N factors of the upper and lower surfaces are different. The lower surface is about 6, and the upper surface is about 2.5. The high-frequency second mode transition occurs in the side edge at high unit Reynolds numbers.

  • [1]
    陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337.

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337.
    [2]
    段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391–403. DOI: 10.7638/kqdlxxb-2020.0041

    DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic boundary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041
    [3]
    孙杭义, 陈喜兰, 罗月培, 等. 高超声速飞行器边界层转捩飞行实验项目地面试验进展[J]. 飞航导弹, 2020(6): 23–28.
    [4]
    李强, 赵磊, 陈苏宇, 等. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究[J]. 物理学报, 2020, 69(2): 024703. DOI: 10.7498/aps.69.20191155

    LI Q, ZHAO L, CHEN S Y, et al. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition[J]. Acta Physica Sinica, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [5]
    CASPER K M, BERESH S J, HENFLING J F, et al. Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone[J]. AIAA Journal, 2016, 54(4): 1250–1263. doi: 10.2514/1.J054033
    [6]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1736
    [7]
    王文, 蒋华兵. 钝锥表面脉动压力风洞试验研究[J]. 装备环境工程, 2021, 18(3): 45–50.

    WANG W, JIANG H B. Wind tunnel test research on surface pressure fluctuations of a blunt cone[J]. Equipment Environmental Engineering, 2021, 18(3): 45–50.
    [8]
    陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. DOI: 10.11729/syltlx20180172

    CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
    [9]
    易仕和, 刘小林, 牛海波, 等. 高超声速边界层流动稳定性实验研究[J]. 空气动力学学报, 2020, 38(1): 137–142.

    YI S H, LIU X L, NIU H B, et al. Experimental study on flow stability of hypersonic boundary layer[J]. Acta Aero-dynamica Sinica, 2020, 38(1): 137–142.
    [10]
    刘小林. 高超声速条件下圆锥边界层转捩相关实验研究[D]. 长沙: 国防科技大学, 2019.

    LIU X L. Experimental investigation of the hypersonic boundary layer transition on the cones[D]. Changsha: National University of Defense Technology, 2019.
    [11]
    JULIANO T J, SCHNEIDER S P. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-5004
    [12]
    WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2892
    [13]
    BERRIDGE D C, McKIERNAN G, WADHAMS T P, et al. Hypersonic ground tests in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2893
    [14]
    THOME J, DWIVEDI A, NICHOLS J W, et al. Direct numerical simulation of BOLT hypersonic flight vehicle[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2894
    [15]
    MOYES A, KOCIAN T S, MULLEN C D, et al. Pre-flight boundary-layer stability analysis of BOLT geometry[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2895
    [16]
    KOSTAK H, BOWERSOX R D, McKIERNAN G, et al. Freestream disturbance effects on boundary layer instability and transition on the AFOSR BOLT geometry[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0088
    [17]
    COOK D A, THOME J, NICHOLS J W, et al. Receptivity analysis of BOLT to distributed surface roughness using input-output analysis[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0089
    [18]
    BERRIDGE D C, KOSTAK H, McKIERNAN G, et al. Hypersonic ground tests with high-frequency instrumentation in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0090
    [19]
    BERRY S A, MASON M L, GREENE F, et al. LaRC aerothermodynamic ground tests in support of BOLT flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0091
    [20]
    高清, 李建华, 李潜. 升力体高超声速飞行器横向气动特性研究[J]. 实验流体力学, 2015, 29(1): 43–48. DOI: 10.11729/syltlx20130107

    GAO Q, LI J H, LI Q. Study on lateral stability of hypersonic lifting-configurations[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 43–48. doi: 10.11729/syltlx20130107
    [21]
    LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637–1647. doi: 10.1007/s10409-021-01136-5
    [22]
    陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317.

    CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317.
    [23]
    陈曦, 董思卫, 袁先旭, 等. 升力体(HyTRV)边界层全局稳定性分析[C]//第十九届全国激波与激波管学术会议论文集. 2020.
    [24]
    罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372.
  • Related Articles

    [1]WANG Junqi, CHEN Zheng, NI Zhaoyong, GAN Caijun, LI Lang. Experimental study on structural characteristics of separation flow induced by 3D wedge in hypersonic laminar flow by oil visualization[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 115-120. DOI: 10.11729/syltlx20180026
    [2]WU Ning, TANG Xin, DUAN Zhuoyi, ZHANG Yanjun. Transition measurement for the nature-laminar wing based on TSP technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 66-70. DOI: 10.11729/syltlx20190085
    [3]XIANG Longkai, YA Yuchen, NIE Xiaokang, REN Fei, KE Wei, CHU Huaqiang. Measurements of laminar burning velocity and analysis of its field for the laminar premixed methane-air flames using the Bunsen burner method and schlieren technique[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 25-32. DOI: 10.11729/syltlx20190087
    [4]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [5]MA Wen-yong, LIU Qing-kuan, LIU Xiao-bing, WEI Yao-yuan. Study on correction and distortion effects caused by tubing systems of pressure measurements in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 71-77. DOI: 10.3969/j.issn.1672-9897.2013.04.013
    [6]SHI Hong-hui, DU Kai, WANG Chao, ZHANG Li-te, JIA Hui-xia, DONG Ruo-ling. Experimental research on Richtmyer-Meshkov instability at the multi-layered fluids interfaces with different density gradients[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 45-50. DOI: 10.3969/j.issn.1672-9897.2011.05.010
    [7]DENG Shuang-guo, ERIQITAI, NIE Jun-jie. Hybrid laminar flow control experiment on swept wing model[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 30-33. DOI: 10.3969/j.issn.1672-9897.2011.03.007
    [8]WANG Fei, Eriqitai, WANG Qiang, GUO Hui, SU Pei-ran. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 54-58. DOI: 10.3969/j.issn.1672-9897.2010.03.011
    [9]GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009
    [10]An experimental study of turbulent boundary layer over the grooved-surface[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(2): 59-64. DOI: 10.3969/j.issn.1672-9897.2004.02.014

Catalog

    Article Metrics

    Article views (449) PDF downloads (107) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close