Turn off MathJax
Article Contents
CHEN J F,XU Y,JIANG W Q,et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220030
Citation: CHEN J F,XU Y,JIANG W Q,et al. Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220030

Infrared thermogram measurement experiment of hypersonic boundary-layer transition of a lifting body

doi: 10.11729/syltlx20220030
  • Received Date: 2022-03-28
  • Accepted Date: 2022-05-19
  • Rev Recd Date: 2022-05-13
  • Available Online: 2022-11-15
  • For a lifting body model, the boundary layer transition infrared thermogram measurement experiment was carried out in the conventional hypersonic wind tunnel, and the influence of different unit Reynolds number and Mach number on the lifting body boundary layer transition was studied, which was compared with the calculation results of the eN method. The length of the experimental model is 800 mm, the unit Reynolds number is 0.46×107~3.94×107 m–1, the Mach number is 5~8, and the angle of attack is 0°. The transition position and transition front of the boundary layer on the surface of the model are obtained by the large-area infrared thermogram technology. The analysis of the experimental results shows that there are crossflow instability and the second mode transition in the boundary layer of the lifting body. As the unit Reynolds number increases, the crossflow transition effect increases, the temperature rise on the lower and upper surfaces of the model increases, the transition front moves forward, and the transition area expands; as the Mach number increases, the crossflow transition effect gradually weakens and the transition position moves downstream, and the transition area significantly shrinks back. Moreover, the transition N factor at different Mach numbers and unit Reynolds numbers are relatively close, but the N factors of the upper and lower surfaces are different. The lower surface is about 6, and the upper surface is about 2.5. The high-frequency second mode transition occurs in the side edge at high unit Reynolds numbers.
  • loading
  • [1]
    陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337.

    CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337.
    [2]
    段毅, 姚世勇, 李思怡, 等. 高超声速边界层转捩的若干问题及工程应用研究进展综述[J]. 空气动力学学报, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041

    DUAN Y, YAO S Y, LI S Y, et al. Review of progress in some issues and engineering application of hypersonic bound-ary layer transition[J]. Acta Aerodynamica Sinica, 2020, 38(2): 391–403. doi: 10.7638/kqdlxxb-2020.0041
    [3]
    孙杭义, 陈喜兰, 罗月培, 等. 高超声速飞行器边界层转捩飞行实验项目地面试验进展[J]. 飞航导弹, 2020(6): 23–28.
    [4]
    李强, 赵磊, 陈苏宇, 等. 展向凹槽及泄流孔对高超声速平板边界层转捩影响的试验研究[J]. 物理学报, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155

    LI Q, ZHAO L, CHEN S Y, et al. Experimental study on effect of transverse groove with/without discharge hole on hypersonic blunt flat-plate boundary layer transition[J]. Acta Physica Sinica, 2020, 69(2): 024703. doi: 10.7498/aps.69.20191155
    [5]
    CASPER K M, BERESH S J, HENFLING J F, et al. Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone[J]. AIAA Journal, 2016, 54(4): 1250–1263. doi: 10.2514/1.J054033
    [6]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1736
    [7]
    王文, 蒋华兵. 钝锥表面脉动压力风洞试验研究[J]. 装备环境工程, 2021, 18(3): 45–50.

    WANG W, JIANG H B. Wind tunnel test research on surface pressure fluctuations of a blunt cone[J]. Equipment Environmental Engineering, 2021, 18(3): 45–50.
    [8]
    陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172

    CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7°half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
    [9]
    易仕和, 刘小林, 牛海波, 等. 高超声速边界层流动稳定性实验研究[J]. 空气动力学学报, 2020, 38(1): 137–142.

    YI S H, LIU X L, NIU H B, et al. Experimental study on flow stability of hypersonic boundary layer[J]. Acta Aero-dynamica Sinica, 2020, 38(1): 137–142.
    [10]
    刘小林. 高超声速条件下圆锥边界层转捩相关实验研究[D]. 长沙: 国防科技大学, 2019.

    LIU X L. Experimental investigation of the hypersonic boundary layer transition on the cones[D]. Changsha: National University of Defense Technology, 2019.
    [11]
    JULIANO T, SCHNEIDER S. Instability and transition on the HIFiRE-5 in a Mach 6 quiet tunnel[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-5004
    [12]
    WHEATON B M, BERRIDGE D C, WOLF T D, et al. Boundary layer transition (BOLT) flight experiment overview[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2892
    [13]
    BERRIDGE D C, MCKIERNAN G, WADHAMS T P, et al. Hypersonic ground tests in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2893
    [14]
    THOME J, DWIVEDI A, NICHOLS J W, et al. Direct numerical simulation of BOLT hypersonic flight vehicle[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2894
    [15]
    MOYES A, KOCIAN T S, MULLEN C D, et al. Pre-flight boundary-layer stability analysis of BOLT geometry[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi: 10.2514/6.2018-2895
    [16]
    KOSTAK H, BOWERSOX R D, MCKIERNAN G, et al. Freestream disturbance effects on boundary layer instability and transition on the AFOSR BOLT geometry[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0088
    [17]
    COOK D A, THOME J, NICHOLS J W, et al. Receptivity analysis of BOLT to distributed surface roughness using input-output analysis[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0089
    [18]
    BERRIDGE D C, KOSTAK H, MCKIERNAN G, et al. Hypersonic ground tests with high-frequency instrumentation in support of the boundary layer transition (BOLT) flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0090
    [19]
    BERRY S A, MASON M L, GREENE F, et al. LaRC aerothermodynamic ground tests in support of BOLT flight experiment[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-0091
    [20]
    高清, 李建华, 李潜. 升力体高超声速飞行器横向气动特性研究[J]. 实验流体力学, 2015, 29(1): 43–48. doi: 10.11729/syltlx20130107

    GAO Q, LI J H, LI Q. Study on lateral stability of hypersonic lifting-configurations[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(1): 43–48. doi: 10.11729/syltlx20130107
    [21]
    LIU S S, YUAN X X, LIU Z Y, et al. Design and transition characteristics of a standard model for hypersonic boundary layer transition research[J]. Acta Mechanica Sinica, 2021, 37(11): 1637–1647. doi: 10.1007/s10409-021-01136-5
    [22]
    陈坚强, 涂国华, 万兵兵, 等. HyTRV流场特征与边界层稳定性特征分析[J]. 航空学报, 2021, 42(6): 124317.

    CHEN J Q, TU G H, WAN B B, et al. Characteristics of flow field and boundary-layer stability of HyTRV[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124317.
    [23]
    陈曦, 董思卫, 袁先旭, 等. 升力体(HyTRV)边界层全局稳定性分析[C]//第十九届全国激波与激波管学术会议论文集. 2020.
    [24]
    罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (253) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return