Citation: | XU S J, HUANG Y P, ZHANG C B. Experimental study on flow and heat transfer characteristics of Single-Phase Immersion Liquid Cooling systems[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240017. |
[1] |
XING L L, LI F H, LIN X X, et al. Construction and performance analysis of CO2 heat pump energy storage based on the waste heat of data center[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 514–523. doi: 10.19944/j.eptep.1674-8069.2023.06.007
|
[2] |
PAMBUDI N A, SARIFUDIN A, FIRDAUS R A, et al. The immersion cooling technology: current and future development in energy saving[J]. Alexandria Engineering Journal, 2022, 61(12): 9509–9527. doi: 10.1016/j.aej.2022.02.059
|
[3] |
HAGHSHENAS K, TAHERI S, GOUDARZI M, et al. Infrastructure aware heterogeneous-workloads scheduling for data center energy cost minimization[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 972–983. doi: 10.1109/TCC.2020.2977040
|
[4] |
肖新文. 数据中心液冷技术应用研究进展[J]. 暖通空调, 2022, 52(1): 52–65. DOI: 10.19991/j.hvac1971.2022.01.09
XIAO X W. Review on liquid cooling technologies applied to data centers[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 52–65. doi: 10.19991/j.hvac1971.2022.01.09
|
[5] |
赵田田, 王鲁元, 张兴宇, 等. 数据中心浸没式相变冷却研究进展[J]. 华电技术, 2021, 43(10): 68–72. DOI: 10.3969/j.issn.1674-1951.2021.10.008
ZHAO T T, WANG L Y, ZHANG X Y, et al. Research progress of immersion phase-change cooling for data centers[J]. Huadian Technology, 2021, 43(10): 68–72. doi: 10.3969/j.issn.1674-1951.2021.10.008
|
[6] |
LING L, ZHANG Q, YU Y B, et al. A state-of-the-art review on the application of heat pipe system in data centers[J]. Applied Thermal Engineering, 2021, 199: 117618. doi: 10.1016/j.applthermaleng.2021.117618
|
[7] |
JOUHARA H, MESKIMMON R. Heat pipe based thermal management systems for energy-efficient data centres[J]. Energy, 2014, 77: 265–270. doi: 10.1016/j.energy.2014.08.085
|
[8] |
侯立强, 阎帅, 钮晓博, 等. 基于主动旋转的螺旋翅片储热单元传热性能优化分析[J]. 电力科技与环保, 2023, 39(6): 553–560. DOI: 10.19944/j.eptep.1674-8069.2023.06.011
HOU L Q, YAN S, NIU X B, et al. Analysis of the heat transfer performance of spiral fin heat storage units under active rotation conditions[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 553–560. doi: 10.19944/j.eptep.1674-8069.2023.06.011
|
[9] |
HUANG Y P, DENG Z L, CHEN Y P, et al. Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers[J]. Applied Energy, 2023, 335: 120745. doi: 10.1016/j.apenergy.2023.120745
|
[10] |
MA X W, ZHANG Q, ZOU S K. An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center[J]. Energy, 2022, 253: 123946. doi: 10.1016/j.energy.2022.123946
|
[11] |
HNAYNO M, CHEHADE A, KLABA H, et al. Experimental investigation of a data-centre cooling system using a new single-phase immersion/liquid technique[J]. Case Studies in Thermal Engineering, 2023, 45: 102925. doi: 10.1016/j.csite.2023.102925
|
[12] |
NADA S A, EL-ZOHEIRY R M, ELSHARNOBY M, et al. Experimental investigation of hydrothermal characteristics of data center servers’ liquid cooling system for different flow configurations and geometric conditions[J]. Case Studies in Thermal Engineering, 2021, 27: 101276. doi: 10.1016/j.csite.2021.101276
|
[13] |
ZHAN B F, SHAO S Q, ZHANG H N, et al. Simulation on vertical microchannel evaporator for rack-backdoor cooling of data center[J]. Applied Thermal Engineering, 2020, 164: 114550. doi: 10.1016/j.applthermaleng.2019.114550
|
[14] |
LI Y, BAI M L, ZHOU Z F, et al. Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid[J]. Journal of Energy Storage, 2023, 73: 109166. doi: 10.1016/j.est.2023.109166
|
[15] |
LIU X Y, ZHOU Z F, WU W T, et al. Modelling for the mitigation of lithium ion battery thermal runaway propagation by using phase change material or liquid immersion cooling[J]. Case Studies in Thermal Engineering, 2023, 52: 103749. doi: 10.1016/j.csite.2023.103749
|
[16] |
LIN X W, LI Y B, WU W T, et al. Advances on two-phase heat transfer for lithium-ion battery thermal management[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 114052. doi: 10.1016/j.rser.2023.114052
|
[17] |
CHEN M Y, CHENG W M, ZHAO L Y, et al. Feasibility study and dimensionless theoretical analysis of cylindrical lithium-ion battery module cooled by dynamic circulating transformer oil[J]. Applied Thermal Engineering, 2024, 236: 121737. doi: 10.1016/j.applthermaleng.2023.121737
|
[18] |
GAO Q, LEI Z G, HUANG Y P, et al. Performance investigation of a liquid immersion cooling system with fish-shaped bionic structure for Lithium-ion battery pack[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125156. doi: 10.1016/j.ijheatmasstransfer.2023.125156
|
[19] |
LIU Q, SUN C, ZHANG J S, et al. The electro-thermal equalization behaviors of battery modules with immersion cooling[J]. Applied Energy, 2023, 351: 121826. doi: 10.1016/j.apenergy.2023.121826
|
[20] |
LUO Q Y, WANG C H, WU C L. Study on heat transfer performance of immersion system based on sic/white mineral oil composite nanofluids[J]. International Journal of Thermal Sciences, 2023, 187: 108203. doi: 10.1016/j.ijthermalsci.2023.108203
|
[21] |
JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122608. doi: 10.1016/j.ijheatmasstransfer.2022.122608
|
[22] |
ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries–A review[J]. Journal of Power Sources, 2022, 525: 231094. doi: 10.1016/j.jpowsour.2022.231094
|
[23] |
吴曦蕾, 刘滢, 倪航, 等. 不同电子氟化液对浸没式相变冷却系统性能的影响[J]. 制冷学报, 2021, 42(4): 74–82. DOI: 10.3969/j.issn.0253-4339.2021.04.074
WU X L, LIU Y, NI H, et al. Effect of different electronic cooling liquid on the performance of immersion phase change cooling system[J]. Journal of Refrigeration, 2021, 42(4): 74–82. doi: 10.3969/j.issn.0253-4339.2021.04.074
|
[24] |
WANG H J, YUAN X J, ZHANG K, et al. Performance evaluation and optimization of data center servers using single-phase immersion cooling[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125057. doi: 10.1016/j.ijheatmasstransfer.2023.125057
|
[25] |
BEHNIA M, DeHGHAN A A, MISHIMA H, et al. A numerical study of natural convection immersion cooling of multiple heat sources in parallel interacting open-top cavities[J]. International Journal of Heat and Mass Transfer, 1998, 41(4-5): 797–808. doi: 10.1016/s0017-9310(97)00130-0
|
[26] |
SHRIGONDEKAR H, LIN Y C, WANG C C. Investigations on performance of single-phase immersion cooling system[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123961. doi: 10.1016/j.ijheatmasstransfer.2023.123961
|
[27] |
HUANG Y P, GE J L, CHEN Y P, et al. Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124023. doi: 10.1016/j.ijheatmasstransfer.2023.124023
|
[28] |
CHENG C C, CHANG P C, LI H C, et al. Design of a single-phase immersion cooling system through experimental and numerical analysis[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120203. doi: 10.1016/j.ijheatmasstransfer.2020.120203
|
[29] |
LIU Y H, ALDAN G, HUANG X Y, et al. Single-phase static immersion cooling for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2023, 233: 121184. doi: 10.1016/j.applthermaleng.2023.121184
|
[30] |
CELEN A. Experimental investigation on single-phase immersion cooling of a lithium-ion pouch-type battery under various operating conditions[J]. Applied Sciences, 2023, 13(5): 2775. doi: 10.3390/app13052775
|
[31] |
LIU Q, QIN L, SHI Q L, et al. Optimization of the active battery immersion cooling based on a self-organized fluid flow design[J]. Journal of Energy Storage, 2024, 76: 109851. doi: 10.1016/j.est.2023.109851
|
[32] |
MUNEESHWARAN M, LIN Y C, WANG C C. Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid[J]. International Communications in Heat and Mass Transfer, 2023, 145(Part B): 106843. doi: 10.1016/j.icheatmasstransfer.2023.106843
|
[33] |
TADDEO P, ROMANÍ J, SUMMERS J, et al. Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data centre[J]. Applied Thermal Engineering, 2023, 234: 121260. doi: 10.1016/j.applthermaleng.2023.121260
|
[34] |
KANBUR B B, WU C L, FAN S M, et al. System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments[J]. Energy, 2021, 217: 119373. doi: 10.1016/j.energy.2020.119373
|
[35] |
MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3–17. doi: 10.1016/0894-1777(88)90043-x
|
[36] |
CHANG H L, HAN Z R, LI X H, et al. Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger[J]. Energy, 2022, 254: 124164. doi: 10.1016/j.energy.2022.124164
|
[37] |
REHMAN T U, AMBREEN T, NIYAS H, et al. Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122591. doi: 10.1016/j.ijheatmasstransfer.2022.122591
|
[38] |
SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146–158. doi: 10.1016/j.apenergy.2018.04.042
|
1. |
张玉杰,黄超广,孙仁俊. 脉动压力风洞试验采样参数确定方法及应用. 装备环境工程. 2024(09): 87-92 .
![]() |