XU S J, HUANG Y P, ZHANG C B. Experimental study on flow and heat transfer characteristics of Single-Phase Immersion Liquid Cooling systems[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240017.
Citation: XU S J, HUANG Y P, ZHANG C B. Experimental study on flow and heat transfer characteristics of Single-Phase Immersion Liquid Cooling systems[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240017.

Experimental study on flow and heat transfer characteristics of Single-Phase Immersion Liquid Cooling systems

More Information
  • Received Date: February 03, 2024
  • Revised Date: March 20, 2024
  • Accepted Date: March 12, 2024
  • Available Online: May 15, 2024
  • To address the energy consumption issue in data centers, this study investigates the Single-Phase Immersion Liquid Cooling (SPILC) system by an experimental platform. The influential mechanisms of the coolant flow rate and chip power on the SPILC performance are analyzed. The results indicate that the heat transfer of chips located at inlet regions is more influenced by board layout than that of the chips at the outlet region. Moreover, the chip case temperature shows a trend of slight increase followed by a decrease as the flow rate increases. There exists a critical flow rate beyond which further increase does not significantly improve the SPILC performance. Additionally, the chip case temperature rises significantly with increasing power, and lower flow rates result in greater temperature increases. When the flow rate does not exceed 4.0 L/min, the chip power has almost no effect on the system pressure drop. Moreover, the influence of the flow rate on the power usage effectiveness of SPILC systems is significant when the total chip power is low, but this effect is greatly weakened as the chip power increases.
  • [1]
    XING L L, LI F H, LIN X X, et al. Construction and performance analysis of CO2 heat pump energy storage based on the waste heat of data center[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 514–523. doi: 10.19944/j.eptep.1674-8069.2023.06.007
    [2]
    PAMBUDI N A, SARIFUDIN A, FIRDAUS R A, et al. The immersion cooling technology: current and future development in energy saving[J]. Alexandria Engineering Journal, 2022, 61(12): 9509–9527. doi: 10.1016/j.aej.2022.02.059
    [3]
    HAGHSHENAS K, TAHERI S, GOUDARZI M, et al. Infrastructure aware heterogeneous-workloads scheduling for data center energy cost minimization[J]. IEEE Transactions on Cloud Computing, 2022, 10(2): 972–983. doi: 10.1109/TCC.2020.2977040
    [4]
    肖新文. 数据中心液冷技术应用研究进展[J]. 暖通空调, 2022, 52(1): 52–65. DOI: 10.19991/j.hvac1971.2022.01.09

    XIAO X W. Review on liquid cooling technologies applied to data centers[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 52–65. doi: 10.19991/j.hvac1971.2022.01.09
    [5]
    赵田田, 王鲁元, 张兴宇, 等. 数据中心浸没式相变冷却研究进展[J]. 华电技术, 2021, 43(10): 68–72. DOI: 10.3969/j.issn.1674-1951.2021.10.008

    ZHAO T T, WANG L Y, ZHANG X Y, et al. Research progress of immersion phase-change cooling for data centers[J]. Huadian Technology, 2021, 43(10): 68–72. doi: 10.3969/j.issn.1674-1951.2021.10.008
    [6]
    LING L, ZHANG Q, YU Y B, et al. A state-of-the-art review on the application of heat pipe system in data centers[J]. Applied Thermal Engineering, 2021, 199: 117618. doi: 10.1016/j.applthermaleng.2021.117618
    [7]
    JOUHARA H, MESKIMMON R. Heat pipe based thermal management systems for energy-efficient data centres[J]. Energy, 2014, 77: 265–270. doi: 10.1016/j.energy.2014.08.085
    [8]
    侯立强, 阎帅, 钮晓博, 等. 基于主动旋转的螺旋翅片储热单元传热性能优化分析[J]. 电力科技与环保, 2023, 39(6): 553–560. DOI: 10.19944/j.eptep.1674-8069.2023.06.011

    HOU L Q, YAN S, NIU X B, et al. Analysis of the heat transfer performance of spiral fin heat storage units under active rotation conditions[J]. Electric Power Technology and Environmental Protection, 2023, 39(6): 553–560. doi: 10.19944/j.eptep.1674-8069.2023.06.011
    [9]
    HUANG Y P, DENG Z L, CHEN Y P, et al. Performance investigation of a biomimetic latent heat thermal energy storage device for waste heat recovery in data centers[J]. Applied Energy, 2023, 335: 120745. doi: 10.1016/j.apenergy.2023.120745
    [10]
    MA X W, ZHANG Q, ZOU S K. An experimental and numerical study on the thermal performance of a loop thermosyphon integrated with latent thermal energy storage for emergency cooling in a data center[J]. Energy, 2022, 253: 123946. doi: 10.1016/j.energy.2022.123946
    [11]
    HNAYNO M, CHEHADE A, KLABA H, et al. Experimental investigation of a data-centre cooling system using a new single-phase immersion/liquid technique[J]. Case Studies in Thermal Engineering, 2023, 45: 102925. doi: 10.1016/j.csite.2023.102925
    [12]
    NADA S A, EL-ZOHEIRY R M, ELSHARNOBY M, et al. Experimental investigation of hydrothermal characteristics of data center servers’ liquid cooling system for different flow configurations and geometric conditions[J]. Case Studies in Thermal Engineering, 2021, 27: 101276. doi: 10.1016/j.csite.2021.101276
    [13]
    ZHAN B F, SHAO S Q, ZHANG H N, et al. Simulation on vertical microchannel evaporator for rack-backdoor cooling of data center[J]. Applied Thermal Engineering, 2020, 164: 114550. doi: 10.1016/j.applthermaleng.2019.114550
    [14]
    LI Y, BAI M L, ZHOU Z F, et al. Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid[J]. Journal of Energy Storage, 2023, 73: 109166. doi: 10.1016/j.est.2023.109166
    [15]
    LIU X Y, ZHOU Z F, WU W T, et al. Modelling for the mitigation of lithium ion battery thermal runaway propagation by using phase change material or liquid immersion cooling[J]. Case Studies in Thermal Engineering, 2023, 52: 103749. doi: 10.1016/j.csite.2023.103749
    [16]
    LIN X W, LI Y B, WU W T, et al. Advances on two-phase heat transfer for lithium-ion battery thermal management[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 114052. doi: 10.1016/j.rser.2023.114052
    [17]
    CHEN M Y, CHENG W M, ZHAO L Y, et al. Feasibility study and dimensionless theoretical analysis of cylindrical lithium-ion battery module cooled by dynamic circulating transformer oil[J]. Applied Thermal Engineering, 2024, 236: 121737. doi: 10.1016/j.applthermaleng.2023.121737
    [18]
    GAO Q, LEI Z G, HUANG Y P, et al. Performance investigation of a liquid immersion cooling system with fish-shaped bionic structure for Lithium-ion battery pack[J]. International Journal of Heat and Mass Transfer, 2024, 222: 125156. doi: 10.1016/j.ijheatmasstransfer.2023.125156
    [19]
    LIU Q, SUN C, ZHANG J S, et al. The electro-thermal equalization behaviors of battery modules with immersion cooling[J]. Applied Energy, 2023, 351: 121826. doi: 10.1016/j.apenergy.2023.121826
    [20]
    LUO Q Y, WANG C H, WU C L. Study on heat transfer performance of immersion system based on sic/white mineral oil composite nanofluids[J]. International Journal of Thermal Sciences, 2023, 187: 108203. doi: 10.1016/j.ijthermalsci.2023.108203
    [21]
    JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122608. doi: 10.1016/j.ijheatmasstransfer.2022.122608
    [22]
    ROE C, FENG X N, WHITE G, et al. Immersion cooling for lithium-ion batteries–A review[J]. Journal of Power Sources, 2022, 525: 231094. doi: 10.1016/j.jpowsour.2022.231094
    [23]
    吴曦蕾, 刘滢, 倪航, 等. 不同电子氟化液对浸没式相变冷却系统性能的影响[J]. 制冷学报, 2021, 42(4): 74–82. DOI: 10.3969/j.issn.0253-4339.2021.04.074

    WU X L, LIU Y, NI H, et al. Effect of different electronic cooling liquid on the performance of immersion phase change cooling system[J]. Journal of Refrigeration, 2021, 42(4): 74–82. doi: 10.3969/j.issn.0253-4339.2021.04.074
    [24]
    WANG H J, YUAN X J, ZHANG K, et al. Performance evaluation and optimization of data center servers using single-phase immersion cooling[J]. International Journal of Heat and Mass Transfer, 2024, 221: 125057. doi: 10.1016/j.ijheatmasstransfer.2023.125057
    [25]
    BEHNIA M, DeHGHAN A A, MISHIMA H, et al. A numerical study of natural convection immersion cooling of multiple heat sources in parallel interacting open-top cavities[J]. International Journal of Heat and Mass Transfer, 1998, 41(4-5): 797–808. doi: 10.1016/s0017-9310(97)00130-0
    [26]
    SHRIGONDEKAR H, LIN Y C, WANG C C. Investigations on performance of single-phase immersion cooling system[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123961. doi: 10.1016/j.ijheatmasstransfer.2023.123961
    [27]
    HUANG Y P, GE J L, CHEN Y P, et al. Natural and forced convection heat transfer characteristics of single-phase immersion cooling systems for data centers[J]. International Journal of Heat and Mass Transfer, 2023, 207: 124023. doi: 10.1016/j.ijheatmasstransfer.2023.124023
    [28]
    CHENG C C, CHANG P C, LI H C, et al. Design of a single-phase immersion cooling system through experimental and numerical analysis[J]. International Journal of Heat and Mass Transfer, 2020, 160: 120203. doi: 10.1016/j.ijheatmasstransfer.2020.120203
    [29]
    LIU Y H, ALDAN G, HUANG X Y, et al. Single-phase static immersion cooling for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2023, 233: 121184. doi: 10.1016/j.applthermaleng.2023.121184
    [30]
    CELEN A. Experimental investigation on single-phase immersion cooling of a lithium-ion pouch-type battery under various operating conditions[J]. Applied Sciences, 2023, 13(5): 2775. doi: 10.3390/app13052775
    [31]
    LIU Q, QIN L, SHI Q L, et al. Optimization of the active battery immersion cooling based on a self-organized fluid flow design[J]. Journal of Energy Storage, 2024, 76: 109851. doi: 10.1016/j.est.2023.109851
    [32]
    MUNEESHWARAN M, LIN Y C, WANG C C. Performance analysis of single-phase immersion cooling system of data center using FC-40 dielectric fluid[J]. International Communications in Heat and Mass Transfer, 2023, 145(Part B): 106843. doi: 10.1016/j.icheatmasstransfer.2023.106843
    [33]
    TADDEO P, ROMANÍ J, SUMMERS J, et al. Experimental and numerical analysis of the thermal behaviour of a single-phase immersion-cooled data centre[J]. Applied Thermal Engineering, 2023, 234: 121260. doi: 10.1016/j.applthermaleng.2023.121260
    [34]
    KANBUR B B, WU C L, FAN S M, et al. System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments[J]. Energy, 2021, 217: 119373. doi: 10.1016/j.energy.2020.119373
    [35]
    MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3–17. doi: 10.1016/0894-1777(88)90043-x
    [36]
    CHANG H L, HAN Z R, LI X H, et al. Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger[J]. Energy, 2022, 254: 124164. doi: 10.1016/j.energy.2022.124164
    [37]
    REHMAN T U, AMBREEN T, NIYAS H, et al. Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets[J]. International Journal of Heat and Mass Transfer, 2022, 188: 122591. doi: 10.1016/j.ijheatmasstransfer.2022.122591
    [38]
    SAW L H, POON H M, THIAM H S, et al. Novel thermal management system using mist cooling for lithium-ion battery packs[J]. Applied Energy, 2018, 223: 146–158. doi: 10.1016/j.apenergy.2018.04.042
  • Cited by

    Periodical cited type(1)

    1. 张玉杰,黄超广,孙仁俊. 脉动压力风洞试验采样参数确定方法及应用. 装备环境工程. 2024(09): 87-92 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (236) PDF downloads (66) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close