Citation: | ZHANG Y, DING J F, LIU Y Q, et al. Research on trichromatic mask for 3D PIV particle image extraction using a single color camera from three views[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240012. |
The trichromatic mask single-color camera 3D PIV technology uses an optical trichromatic mask element to modulate the imaging light path of a color camera, combining color information with perspective information. This enables the RGB channels of the color-sensitive chip to record images of tracer particles from three perspectives, achieving single-camera 3D flow field measurements. Color cameras typically use a single sensor with a Bayer mask to capture color images. To obtain complete three-channel information of tracer particles, the missing color components in the Bayer image must be restored through demosaicing to extract the three-perspective images. This paper employs High Quality Linear Interpolation (HQLI) algorithms, Gradient Based Threshold Free (GBTF) algorithms, and deep learning algorithms based on U-Net + + neural networks to demosaic particle Bayer images. The quality of three-perspective image extraction by these three algorithms is evaluated using image evaluation metrics and the impact on particle reconstruction quality Q. Simulation experiments on artificially synthesized Gaussian vortex 3D flow fields are conducted to analyze the impact of these algorithms on measurement error. Zero-Net Mass Flux (ZNMF) jet experiments are utilized to study the demosaicing of experimental particle images and analyze the results of transient velocity fields. The results demonstrate that, compared to traditional algorithms (HQLI, GBTF), the deep learning algorithm based on U-Net++ neural networks can more effectively extract three-perspective images of particles, thereby reducing measurement error.
[1] |
ADRIAN R J. Twenty years of particle image velocimetry[J]. Experiments in Fluids, 2005, 39(2): 159–169. doi: 10.1007/s00348-005-0991-7
|
[2] |
王振斌, 文慧霞, 张雷. PIV测速系统特性及应用趋势[J]. 中国科技信息, 2020(22): 43–44.
WANG Z B, WEN H X, ZHANG L. Characteristics and application trend of PIV speed measurement system[J]. China Science and Technology Information, 2020(22): 43–44.
|
[3] |
ADRIAN R J, WESTERWEEL J. Particle image velocimetry[M]. Cambridge: Cambridge university press, 2011.
|
[4] |
GAO Q, WANG H P, SHEN G X. Review on development of volumetric particle image velocimetry[J]. Chinese Science Bulletin, 2013, 58(36): 4541–4556. doi: 10.1007/s11434-013-6081-y
|
[5] |
GAO Q, WANG H P, WANG J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55(9): 2501–2510. doi: 10.1007/s11431-012-4921-7
|
[6] |
丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50–58. DOI: 10.11729/syltlx20160141
DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50–58. doi: 10.11729/syltlx20160141
|
[7] |
XIONG J, AGUIRRE-PABLO A A, IDOUGHI R, et al. RainbowPIV with improved depth resolution—design and comparative study with TomoPIV[J]. Measurement Science and Technology, 2021, 32(2): 025401. doi: 10.1088/1361-6501/abb0ff
|
[8] |
ZHANG Y, DING J F, LIANG X Y, et al. A volumetric particle image velocimetry technique based on single color camera with trichromatic mask[J]. Chinese Journal of Aeronautics, 2024. doi: 10.1016/j.cja.2024.09.003
|
[9] |
BAYER B E. Color imaging array: DE19762608998[P]. 1976-09-16.
|
[10] |
RAMANATH R, SNYDER W E, BILBRO G L, et al. Demosaicking methods for Bayer color arrays[J]. Journal of Electronic Imaging, 2002, 11(3): 306–315. doi: 10.1117/1.1484495
|
[11] |
HOU H, ANDREWS H. Cubic splines for image interpolation and digital filtering[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508–517. doi: 10.1109/TASSP.1978.1163154
|
[12] |
MALVAR H S, HE L W, CUTLER R. High-quality linear interpolation for demosaicing of Bayer-patterned color images[C]//Proc of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2004. doi: 10.1109/ICASSP.2004.1326587
|
[13] |
ZHANG L, WU X L. Color demosaicking via directional linear minimum mean square-error estimation[J]. IEEE Transactions on Image Processing, 2005, 14(12): 2167–2178. doi: 10.1109/TIP.2005.857260
|
[14] |
PEKKUCUKSEN I, ALTUNBASAK Y. Gradient based threshold free color filter array interpolation[C]//Proc of the 2010 IEEE International Conference on Image Processing. 2010: 137-140. doi: 10.1109/ICIP.2010.5654327
|
[15] |
TAN R, ZHANG K, ZUO W, et al. Color image demosaicking via deep residual learning[C]//Proc of the 2017 IEEE International Conference on Multimedia and Expo. 2017.
|
[16] |
KOKKINOS F, LEFKIMMIATIS S. Deep image demosaicking using a cascade of convolutional residual denoising networks[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 317-333. doi: 10.1007/978-3-030-01264-9_19
|
[17] |
WANG S Y, ZHAO M X, DOU R J, et al. A compact high-quality image demosaicking neural network for edge-computing devices[J]. Sensors, 2021, 21(9): 3265. doi: 10.3390/s21093265
|
[18] |
WANG Z Y, GAO Q, WANG J J. A triple-exposure color PIV technique for pressure reconstruction[J]. Science China Technological Sciences, 2017, 60(1): 1–15. doi: 10.1007/s11431-016-0270-x
|
[19] |
PALIY D, KATKOVNIK V, BILCU R, et al. Spatially adaptive color filter array interpolation for noiseless and noisy data[J]. International Journal of Imaging Systems and Technology, 2007, 17(3): 105–122. doi: 10.1002/ima.20109
|
[20] |
ATKINSON C, SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47(4): 553–568. doi: 10.1007/s00348-009-0728-0
|
[21] |
ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933–947. doi: 10.1007/s00348-006-0212-z
|
[22] |
ZHONG S, JABBAL M, TANG H, et al. Towards the design of synthetic-jet actuators for full-scale flight conditions[J]. Flow, Turbulence and Combustion, 2007, 78(3): 283–307. doi: 10.1007/s10494-006-9064-0
|
[23] |
WORTH N A, NICKELS T B, SWAMINATHAN N. A tomographic PIV resolution study based on homogeneous isotropic turbulence DNS data[J]. Experiments in Fluids, 2010, 49(3): 637–656. doi: 10.1007/s00348-010-0840-1
|
[24] |
GANAPATHISUBRAMANI B, LAKSHMINARASIMHAN K, CLEMENS N T. Determination of complete velocity gradient tensor by using cinematographic stereoscopic PIV in a turbulent jet[J]. Experiments in Fluids, 2007, 42(6): 923–939. doi: 10.1007/s00348-007-0303-5
|