TIAN H T, YUAN K H, HE H B, et al. The experimental investigation of ramjet inlet aeroelasticity[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230155.
Citation: TIAN H T, YUAN K H, HE H B, et al. The experimental investigation of ramjet inlet aeroelasticity[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230155.

The experimental investigation of ramjet inlet aeroelasticity

More Information
  • Received Date: November 19, 2023
  • Revised Date: June 01, 2024
  • Accepted Date: June 24, 2024
  • Available Online: October 13, 2024
  • The flow of the inlet of the ramjet engine is complex, and the structure of the inlet wall plate is very easy to induce aeroelastic problems under the requirements of lightweight structural design. In order to study the influence of aeroelasticity on the performance of the ramjet inlet, the aeroelastic wind tunnel test of the inlet was carried out. The stiffness design of the structure of the inlet lip and the internal inlet panel was carried out, and the influence of the aeroelasticity of the inlet tract on the performance of the inlet tract and the structural dynamics response characteristics under the high-speed flow condition were studied. The results of the wind tunnel test show that the maximum elastic deformation of the inlet lip structure is about 2.25 mm, accounting for 1.3% of the inlet’s lip width, resulting in a decrease of about 5% in the total pressure recovery coefficient of the inlet tract, an increase of about 10% in the flow coefficient of the inlet tract, and a significant change in the inlet performance. Under the action of complex shock waves, the internal wall plate structure of the inlet duct presents obvious static deformation characteristics. There is high-frequency vibration on the basis of static deformation, and the vibration frequency is close to the high-order mode frequency of the wall plate. The results of this paper show that aeroelasticity has a significant effect on the performance of ramjet engine inlet tracts. Therefore, the influence of aeroelasticity should be considered in the refined design of the air inlet aerodynamics and structure.

  • [1]
    SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace Sciences, 2016, 84: 1–28. doi: 10.1016/j.paerosci.2016.04.001
    [2]
    HÄBERLE J, GÜLHAN A. Investigation of two-dimensional scramjet inlet flowfield at Mach 7[J]. Journal of Propulsion and Power, 2008, 24(3): 446–459. doi: 10.2514/1.33545
    [3]
    叶正寅, 孟宪宗, 刘成, 等. 高超声速飞行器气动弹性的近期进展与发展展望[J]. 空气动力学学报, 2018, 36(6): 983–994. DOI: 10.7638/kqdlxxb-2018.0060

    YE Z Y, MENG X Z, LIU C, et al. Progress and prospects on aeroelasticity of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2018, 36(6): 983–994. doi: 10.7638/kqdlxxb-2018.0060
    [4]
    McNAMARA J, FRIEDMANN P, POWELL K, et al. Three-dimensional aeroelastic and aerothermoelastic behavior in hypersonic flow[C]//Proc of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2005: AIAA 2005-2175. doi: 10.2514/6.2005-2175
    [5]
    ROGERS R, CAPRIOTTI D, GUY R. Experimental supersonic combustion research at NASA Langley[C]//Proc of the 20th AIAA Advanced Measurement and Ground Testing Technology Conference. 1998: AIAA 1998-2506. doi: 10.2514/6.1998-2506
    [6]
    KLINE H L, PALACIOS F, ALONSO J J. Sensitivity of the performance of a 3-dimensional hypersonic inlet to shape deformations[C]//Proc of the 19th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2014. doi: 10.2514/6.2014-3228
    [7]
    LAMORTE N, FRIEDMANN P P, GLAZ B, et al. Uncertainty propagation in hypersonic aerothermoelastic analysis[J]. Journal of Aircraft, 2014, 51(1): 192–203. doi: 10.2514/1.C032233
    [8]
    CULLER A J, McNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393–2406. doi: 10.2514/1.J050617
    [9]
    DUZEL U, EYI S N. The effects of static aeroelasticity on the performance of supersonic/hypersonic nozzles[C]//Proc of the 44th AIAA Fluid Dynamics Conference. 2014. doi: 10.2514/6.2014-2770
    [10]
    YAO C, LIU Z S, Ma R X, et al. Numerical vibration analysis of supersonic mixed-compression intake[C]// ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2013-95444
    [11]
    张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3): 436–443. DOI: 10.7638/kqdlxxb-2017.0036

    ZHANG S T, CHEN F, LIU H. Fluid-thermal-structural coupling analysis on leading edge of hypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3): 436–443. doi: 10.7638/kqdlxxb-2017.0036
    [12]
    靖建朋, 郭荣伟. 气动变形对独立模块薄壳进气道性能影响研究[J]. 宇航学报, 2011, 32(1): 210–218. DOI: 10.3873/j.issn.1000-1328.2011.01.033

    JING J P, GUO R W. Study on influence of pneumatic deformation on the performance of a single module inlet with thin shell[J]. Journal of Astronautics, 2011, 32(1): 210–218. doi: 10.3873/j.issn.1000-1328.2011.01.033
    [13]
    张云峰. 高速气流作用下冲压发动机进气道壁板结构振动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHANG Y F. Study on virbartion characteristic of panel structures of ramjet inlet affected by high speed fluid flows[D]. Harbin: Harbin Institute of Technology, 2007.
    [14]
    叶坤, 叶正寅, 屈展. 高超声速进气道气动弹性的影响研究[J]. 推进技术, 2016, 37(12): 2270–2277. DOI: 10.13675/j.cnki.tjjs.2016.12.009

    YE K, YE Z Y, QU Z. Effects of aeroelasticity on performance of hypersonic inlet[J]. Journal of Propulsion Technology, 2016, 37(12): 2270–2277. doi: 10.13675/j.cnki.tjjs.2016.12.009
    [15]
    DAI G Y, ZENG L, JIA H Y, et al. Preliminary study on the influence of aerothermoelastic deformation on 2-D hypersonic inlet performance[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017. doi: 10.2514/6.2017-2403
    [16]
    BAHAN D, AKPOLAT M T, ÇITAK C, et al. Experimental evaluation of aerodynamic performance and structural excitation characteristics of a supersonic air inlet[C]//Proc of the AIAA AVIATION 2021 Forum, Virtual Event. 2021. doi: 10.2514/6.2021-2494
    [17]
    BHATTRAI S, McQUELLIN L P, CURRAO G M D, et al. Experimental study of aeroelastic response and performance of a hypersonic intake ramp[J]. Journal of Propulsion and Power, 2022, 38(1): 157–170. doi: 10.2514/1.B38348
    [18]
    PELTIER S J, RICE B E, SZMODIS J, et al. Aerodynamic response to a compliant panel in Mach 4 Flow[R]. Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-3541
  • Cited by

    Periodical cited type(6)

    1. 刘奇,刘常青,李增军. 超声速风洞模型冲击载荷抑制装置设计. 航空动力学报. 2023(02): 364-370 .
    2. 王珏,王誉超,季辰. 超声速风洞带舵机状态全尺寸舵颤振亚临界试验. 空天防御. 2023(02): 77-83 .
    3. Chuanwei XUAN,Jinglong HAN,Bing ZHANG,Haiwei YUN,Xiaomao CHEN. Hypersonic flutter and flutter suppression system of a wind tunnel model. Chinese Journal of Aeronautics. 2019(09): 2121-2132 .
    4. 周波,涂清,高川. 超声速风洞模型插入机构控制系统设计. 测控技术. 2019(12): 122-125+135 .
    5. 周波,高川,杨洋. 2m超声速风洞流场变速压控制方法研究. 实验流体力学. 2019(06): 72-77 . 本站查看
    6. 季辰,赵玲,朱剑,刘子强,李锋. 高超声速风洞连续变动压舵面颤振试验. 实验流体力学. 2017(06): 37-44 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (50) PDF downloads (9) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close