HAN X, ZHANG W S, ZHANG Z J, et al. Experimental study on RP3 aviation kerosene oblique detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 21-29. DOI: 10.11729/syltlx20220090
Citation: HAN X, ZHANG W S, ZHANG Z J, et al. Experimental study on RP3 aviation kerosene oblique detonation engine[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 21-29. DOI: 10.11729/syltlx20220090

Experimental study on RP3 aviation kerosene oblique detonation engine

More Information
  • Received Date: September 05, 2022
  • Revised Date: October 16, 2022
  • Accepted Date: October 18, 2022
  • Available Online: November 14, 2022
  • The oblique detonation engine has great potential application in high flight Mach number airbreathing vehicles because of its higher thermodynamic efficiency and smaller size. The research about the oblique detonation engine is renewed all over the world in recent years. However, all of the oblique detonation experiments are conducted with hydrogen fuel or ethylene. There is no experimental result about the kerosene oblique detonation. In order to examine the application feasibility of kerosene oblique detonation engine, the experimental study on the liquid RP3 aviation kerosene oblique detonation engine is conducted in JF–12 shock tunnel and the test time is about 50 ms. The difficult issue for the initiation of kerosene oblique detonation is that the ignition delay time of kerosene-air is too long and the autoignition cannot occur in the combustor. A new forced detonation initiation method is put forth to deal with this key issue. The total temperature of JF–12 shock tunnel is 3800 K and the global equivalence ratio is 0.9, which replicates Mach 9 flight-equivalent condition. The steady-state oblique detonation is obtained successfully during the experiments, which demonstrates the application feasibility of the kerosene oblique detonation engine.

  • [1]
    DUNLAP R, BREHM R L, NICHOLLS J A. A preliminary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Propulsion, 1958, 28(7): 451–456. doi: 10.2514/8.7347
    [2]
    MORRISON R B. Evaluation of the oblique detonation wave ramjet[R]. NASA TR-145358, 1978.
    [3]
    MORRISON R B. Oblique detonation wave ramjet[R]. NASA CR-159192, 1980.
    [4]
    OSTRANDER M J, HYDE J C, YOUNG M F, et al. Standing oblique detonation wave engine performance[R]. AIAA-87-2002, 1987.
    [5]
    PRATT D, HUMPHREY J, GLENN D. Morphology of a standing oblique detonation wave[C]//Proc of the 23rd Joint Propulsion Conference. 1987. doi: 10.2514/6.1987-1785
    [6]
    PRATT D T, HUMPHREY J W, GLENN D E. Morphology of standing oblique detonation waves[J]. Journal of Propulsion and Power, 1991, 7(5): 837–845. doi: 10.2514/3.23399
    [7]
    王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4): 721–737.

    WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 721–737.
    [8]
    马凯夫, 张子健, 刘云峰, 等. 斜爆轰发动机流动机理分析[J]. 气体物理, 2019, 4(3): 1–10.

    MA K F, ZHANG Z J, LIU Y F, et al. Flow mechanism of oblique detonation engines[J]. Physics of Gases, 2019, 4(3): 1–10.
    [9]
    张子健. 斜爆轰推进理论、技术及其实验验证[D]. 北京: 中国科学院大学, 2020.

    ZHANG Z J. Theory, technology and experimental verification of oblique detonation propulsion[D]. Beijing: University of Chinese Academy of Sciences, 2020.
    [10]
    韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法[J]. 力学学报, 2022, 54(3): 633–643.

    HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633–643.
    [11]
    RUBINS P M, RHODES R P. Shock-induced combustion with oblique shocks, comparison of experiment and kinetic calculations[J]. AIAA Journal, 1963, 1(12): 2778–2784. doi: 10.2514/3.2172
    [12]
    RUBINS P M, BAUER R C. Review of shock-induced supersonic combustion research and hypersonic applications[J]. Journal of Propulsion and Power, 1994, 10(5): 593–601. doi: 10.2514/3.23768
    [13]
    STERLING J, CUMMINGS E, GHORBANIAN K, et al. Oblique detonation wave studies in the Caltech T-5 Shock Tunnel Facility[C]//Proc of the 8th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 1998. doi: 10.2514/6.1998-1561
    [14]
    林志勇. 高静温超声速预混气爆震起爆与发展过程机理研究[D]. 长沙: 国防科学技术大学, 2008.

    LIN Z Y. Research on detonation initiation and development mechanisms in elevated temperature supersonic premixed mixture[D]. Changsha: National University of Defense Technology, 2008.
    [15]
    韩旭. 超声速预混气中爆震波起爆与传播机理研究[D]. 长沙: 国防科学技术大学, 2013.

    HAN X. Research on detonation initiation and propagation mechanisms in supersonic premixed flows[D]. Changsha: National University of Defense Technology, 2013.
    [16]
    GONG J S, ZHANG Y N, PAN H, et al. Experimental investigation on initiation of oblique detonation waves[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017. doi: 10.2514/6.2017-2350
    [17]
    ROSATO D A, THORNTON M, SOSA J, et al. Stabilized detonation for hypersonic propulsion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(20): e2102244118. doi: 10.1073/pnas.2102244118
    [18]
    张子健, 韩信, 马凯夫, 等. 斜爆轰发动机燃烧机理试验研究[J]. 推进技术, 2021, 42(4): 786–794.

    ZHANG Z J, HAN X, MA K F, et al. Experimental research on combustion mechanism of oblique detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4): 786–794.
    [19]
    ZHANG Z J, WEN C, YUAN C K, et al. An experimental study of formation of stabilized oblique detonation waves in a combustor[J]. Combustion and Flame, 2022, 237: 111868. doi: 10.1016/j.combustflame.2021.111868
    [20]
    SLACK M W. Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times[J]. Combustion and Flame, 1977, 28: 241–249. doi: 10.1016/0010-2180(77)90031-1
    [21]
    BHASKARAN K A, GUPTA M C, JUST T. Shock tube study of the effect of unsymmetric dimethyl hydrazine on the ignition characteristics of hydrogen-air mixtures[J]. Combustion and Flame, 1973, 21(1): 45–48.
    [22]
    WANG B L, OLIVIER H, GRÖNIG H. Ignition of shock-heated H2-air-steam mixtures[J]. Combustion and Flame, 2003, 133(1-2): 93–106. doi: 10.1016/s0010-2180(02)00552-7
    [23]
    ZHANG C H, LI B, RAO F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3): 3151–3158. doi: 10.1016/j.proci.2014.05.017
    [24]
    ZENG W, LI H X, CHEN B D, et al. Experimental and kinetic modeling study of ignition characteristics of Chinese RP-3 kerosene[J]. Combustion Science and Technology, 2015, 187(3): 396–409. doi: 10.1080/00102202.2014.948620
    [25]
    WANG Y J, ZHANG D X, WAN Z J, et al. A comparative study of ignition delay of cracked kerosene/air and kerosene/air over a wide temperature range[J]. Acta Physico-Chimica Sinica, 2019, 35(6): 591–597. doi: 10.3866/pku.whxb201806042
    [26]
    PEI S S, WANG H Y, ZHANG X W, et al. Experimental measurement of ignition delay times of thermally cracked n-decane in a shock tube[J]. Energy & Fuels, 2017, 31(3): 3262–3269. doi: 10.1021/acs.energyfuels.6b03242
    [27]
    LIU Y P, LIU Y C, CHEN D B, et al. A simplified mechanistic model of three-component surrogate fuels for RP-3 aviation kerosene[J]. Energy & Fuels, 2018, 32(9): 9949–9960. doi: 10.1021/acs.energyfuels.8b02094
    [28]
    梁金虎, 王苏, 张灿, 等. RP-3航空煤油点火特性研究[J]. 力学学报, 2014, 46(3): 352–360.

    LIANG J H, WANG S, ZHANG C, et al. Studies on the autoignition characteristics of RP-3 aviation kerosene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 352–360.
    [29]
    刘靖, 胡二江, 黄佐华, 等. RP-3航空煤油模拟替代燃料的着火延迟特性[J]. 推进技术, 2021, 42(2): 467–473.

    LIU J, HU E J, HUANG Z H, et al. Ignition delay characteristics of a surrogate fuel for RP-3 kerosene[J]. Journal of Propulsion Technology, 2021, 42(2): 467–473.
    [30]
    ZHANG Y J, HUANG Z H, WANG J H, et al. Shock tube study on auto-ignition characteristics of kerosene/air mix-tures[J]. Chinese Science Bulletin, 2011, 56(13): 1399–1406.
    [31]
    徐佳琪, 郭俊江, 刘爱科, 等. RP-3替代燃料自点火燃烧机理构建及动力学模拟[J]. 物理化学学报, 2015, 31(4): 643–652. doi: 10.3866/PKU.WHXB201503022
    [32]
    郑祖骏, 万中军, 李萍, 等. 航空煤油裂解气的高温自点火延迟特性[J]. 含能材料, 2020, 28(5): 391–397.

    ZHENG Z J, WAN Z J, LI P, et al. High temperature auto-ignition delay characteristics of pyrolysis gas of aviation kerosene[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 391–397.
    [33]
    韩信, 张文硕, 张子健, 等. 鼓包诱导斜爆震波的数值研究[J]. 推进技术, 2022, 43(5): 190–201.

    HAN X, ZHANG W S, ZHANG Z J, et al. Numerical study of oblique detonation waves induced by a bump[J]. Journal of Propulsion Technology, 2022, 43(5): 190–201.
    [34]
    韩信. 斜爆轰推进中的起爆与驻定问题研究[D]. 北京: 中国科学院大学, 2022.

Catalog

    Article Metrics

    Article views (2752) PDF downloads (405) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close