Citation: | LI H, HAO L, ZHANG M J, et al. Experimental study on the flow pattern and pressure fluctuation characteristics of ventilated cavitating flows around a conical axisymmetric body at high Froude number[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230138. |
[1] |
SANDERS W C, WINKEL E S, DOWLING D R, et al. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer[J]. Journal of Fluid Mechanics, 2006, 552: 353–380. doi: 10.1017/S0022112006008688
|
[2] |
王海斌, 张嘉钟, 魏英杰, 等. 水下航行体通气超空泡减阻特性实验研究[J]. 船舶工程, 2006, 28(3): 14–17.
WANG H B, ZHANG J Z, WEI Y J, et al. Experimental study of the drag reduction of ventilated supercavity of underwater bodies[J]. Ship Engineering, 2006, 28(3): 14–17.
|
[3] |
颜开, 褚学森, 许晟, 等. 超空泡流体动力学研究进展[J]. 船舶力学, 2006, 10(4): 148–155.
YAN K, CHU X S, XU S, et al. Research progress of supercavitation hydrodynamics[J]. Journal of Ship Mechanics, 2006, 10(4): 148–155.
|
[4] |
SHAO S Y, KARN A, AHN B K, et al. A comparative study of natural and ventilated supercavitation across two closed-wall water tunnel facilities[J]. Experimental Thermal and Fluid Science, 2017, 88: 519–529. doi: 10.1016/j.expthermflusci.2017.07.005
|
[5] |
QIN S J, WU Y, WU D Z, et al. Experimental investigation of ventilated partial cavitation[J]. International Journal of Multiphase Flow, 2019, 113: 153–164. doi: 10.1016/j.ijmultiphaseflow.2019.01.007
|
[6] |
陈伟政, 韦喜忠, 李鹏. 通气空泡水洞试验壁面影响理论分析及空化数修正[J]. 实验流体力学, 2021, 35(2): 112–116. DOI: 10.11729/syltlx20200007
CHEN W Z, WEI X Z, LI P. Wall effects and cavitation number correcting of supercavitating tests in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 112–116. doi: 10.11729/syltlx20200007
|
[7] |
ZOU W, ZHANG X. Shear layer on a ventilated supercavity wall[J]. International Journal of Multiphase Flow, 2021, 135: 103504. doi: 10.1016/j.ijmultiphaseflow.2020.103504
|
[8] |
段磊, 王国玉, 付细能. 绕圆头回转体通气空化流型的实验研究[J]. 实验流体力学, 2014, 28(4): 31–36,64. DOI: 10.11729/syltlx20130040
DUAN L, WANG G Y, FU X N. Experimental research on multiphase flow of ventilated cavity around a hemisphere cylinder[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(4): 31–36,64. doi: 10.11729/syltlx20130040
|
[9] |
REICHARDT H. The law of cavitation bubbles as axially symmetric bodies in a flow[J]. Ministry of Aircraft Production, Report and Translation, 1946, 766: 322–326.
|
[10] |
COX R N, CLAYDEN W A. Air entrainment at the rear of a steady cavity[C]//Proceedings of the Symposium on Cavitation in Hydrodynamics. 1956.
|
[11] |
KARN A, ARNDT R E A, HONG J R. An experimental investigation into supercavity closure mechanisms[J]. Journal of Fluid Mechanics, 2016, 789: 259–284. doi: 10.1017/jfm.2015.680
|
[12] |
XU H Y, LUO K, DANG J J, et al. Numerical investigation of supercavity geometry and gas leakage behavior for the ventilated supercavities with the twin-vortex and the re-entrant jet modes[J]. International Journal of Naval Architecture and Ocean Engineering, 2021, 13: 628–640. doi: 10.1016/j.ijnaoe.2021.04.007
|
[13] |
许海雨, 罗凯, 黄闯, 等. 低弗劳德数通气超空泡初生及发展演变特性[J]. 上海交通大学学报, 2021, 55(8): 934–941. DOI: 10.16183/j.cnki.jsjtu.2020.128
XU H Y, LUO K, HUANG C, et al. Variation characteristics of formation and development of ventilated supercavity at low Froude numbers[J]. Journal of Shanghai Jiao Tong University, 2021, 55(8): 934–941. doi: 10.16183/j.cnki.jsjtu.2020.128
|
[14] |
陆凡, 李杰. 无后体空化器双涡管泄气模式通气超空泡内部流动结构研究[J]. 水动力学研究与进展A辑, 2023, 38(3): 356–362. DOI: 10.16076/j.cnki.cjhd.2023.03.004
LU F, LI J. Study on flow structure in supercavity ventilated by double vortex tube in backless cavitation device[J]. Chinese Journal of Hydrodynamics, 2023, 38(3): 356–362. doi: 10.16076/j.cnki.cjhd.2023.03.004
|
[15] |
WU Y, LIU Y, SHAO S Y, et al. On the internal flow of a ventilated supercavity[J]. Journal of Fluid Mechanics, 2019, 862: 1135–1165. doi: 10.1017/jfm.2018.1006
|
[16] |
LV Y F, ZHANG M J, LIU T T, et al. Physical and numerical study on the transition of gas leakage regime of ventilated cavitating flow[J]. Ocean Engineering, 2021, 239: 109861. doi: 10.1016/j.oceaneng.2021.109861
|
[17] |
SHAO S Y, BALAKRISHNA A, YOON K, et al. Effect of mounting strut and cavitator shape on the ventilation demand for ventilated supercavitation[J]. Experimental Thermal and Fluid Science, 2020, 118: 110173. doi: 10.1016/j.expthermflusci.2020.110173
|
[18] |
LEE S J, KAWAKAMI E, KARN A, et al. A comparative study of behaviors of ventilated supercavities between experimental models with different mounting configurations[J]. Fluid Dynamics Research, 2016, 48(4): 045506. doi: 10.1088/0169-5983/48/4/045506
|
[19] |
ZHANG X W, WEI Y J, ZHANG J Z, et al. Experimental research on the shape characters of natural and ventilated supercavitation[J]. Journal of Hydrodynamics, Ser B, 2007, 19(5): 564–571. doi: 10.1016/S1001-6058(07)60154-1
|
[20] |
魏英杰, 闵景新, 王聪, 等. 重力静压梯度场中通气空泡形态研究[J]. 兵工学报, 2009, 30(9): 1217–1222.
WEI Y J, MIN J X, WANG C, et al. Research on ventilated cavity shapes in a longitudinal gravity force field[J]. Acta Armamentarii, 2009, 30(9): 1217–1222.
|
[21] |
WANG Y W, HUANG C G, DU T Z, et al. Shedding phenomenon of ventilated partial cavitation around an underwater projectile[J]. Chinese Physics Letters, 2012, 29(1): 014601. doi: 10.1088/0256-307x/29/1/014601
|
[22] |
张孝石. 水下航行体空化流动与压力脉动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
ZHANG X S. Study on the cavitating flows and pressure fluctuation for underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2017.
|
[23] |
SUN T Z, ZHANG X S, XU C, et al. Numerical modeling and simulation of the shedding mechanism and vortex structures at the development stage of ventilated partial cavitating flows[J]. European Journal of Mechanics - B/Fluids, 2019, 76: 223–232. doi: 10.1016/j.euromechflu.2019.02.011
|
[24] |
LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of the flow pattern for ventilated partial cavitating flows with effect of Froude number and gas entrainment[J]. Ocean Engineering, 2017, 129: 343–351. doi: 10.1016/j.oceaneng.2016.11.026
|
[25] |
LIU T T, HUANG B, WANG G Y, et al. Experimental investigation of ventilated partial cavitating flows with special emphasis on flow pattern regime and unsteady shedding behavior around an axisymmetric body at different angles of attack[J]. Ocean Engineering, 2018, 147: 289–303. doi: 10.1016/j.oceaneng.2017.10.039
|
[26] |
HAO L, KONG D C, WU Y, et al. Transition and gas leakage mechanisms of ventilated cavities around a conical axisymmetric body[J]. Physical Review Fluids, 2022, 7(12): 123901. doi: 10.1103/physrevfluids.7.123901
|
[27] |
孙铁志. 通气参数对潜射航行体流体动力特性影响的数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.
SUN T Z. Numerical study on effect of ventilation parameters on hydrodynamic characteristics of submaring-launched vehicle[D]. Harbin: Harbin Institute of Technology, 2017.
|
[28] |
ZHANG X S, WANG C, WEKESA D W. Numerical and experimental study of pressure-wave formation around an underwater ventilated vehicle[J]. European Journal of Mechanics - B/Fluids, 2017, 65: 440–449. doi: 10.1016/j.euromechflu.2017.01.011
|
[29] |
KAWAKAMI E, ARNDT R E A. Investigation of the behavior of ventilated supercavities[J]. Journal of Fluids Engineering, 2011, 133(9): 091305. doi: 10.1115/1.4004911
|
[30] |
张广, 于开平, 邹望, 等. 通气空泡最小空化数影响因素数值研究[J]. 哈尔滨工业大学学报, 2013, 45(5): 13–17. DOI: 10.11918/j.issn.0367-6234.2013.05.003
ZHANG G, YU K P, ZOU W, et al. Numerical research on influencing factors of ventilated cavity minimum cavitation number[J]. Journal of Harbin Institute of Technology, 2013, 45(5): 13–17. doi: 10.11918/j.issn.0367-6234.2013.05.003
|
[31] |
ZOU W, YU K P, ARNDT R E A, et al. On minimum cavitation number of the ventilated supercavity in water tunnel[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(10): 1945–1951. doi: 10.1007/s11433-012-4917-0
|
[32] |
LEE S J, PAIK B G, KIM K Y, et al. On axial deformation of ventilated supercavities in closed-wall tunnel experiments[J]. Experimental Thermal and Fluid Science, 2018, 96: 321–328. doi: 10.1016/j.expthermflusci.2018.03.014
|
1. |
段鹏宇,陈曦. 壁湍流的复合减阻及能流分析. 实验流体力学. 2024(04): 1-10 .
![]() | |
2. |
管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 .
![]() | |
3. |
张宇,唐湛棋,崔晓通,姜楠. 壁面局部动态扰动作用下湍流边界层多尺度相互作用. 气体物理. 2024(05): 19-29 .
![]() |