Citation: | ZHANG S Y, ZHAO J B, FU Z L, et al. Wind tunnel test and modeling analysis of cable-covers induced rolling aerodynamics on a tailless missile[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230106. |
In order to reduce structural weight, costs and improve system reliability, the rolling control system of advanced missile is always simplified or eliminated. At the same time, the surface of missiles is generally arranged with protrusions such as cable covers, hooks. These protrusions could produce small rolling aerodynamic moment under certain flow angles, which could induces missiles departing from predetermined trajectory, even leads to mission failure. Therefore, the rolling aerodynamic moment from protrusions should be measured and evaluated accurately before flight test. In this paper, the test technology of continuous rolling of gas bearing to measure small rolling moment is used to complete wind tunnel tests of a tailless missile. The slenderness ratio of this missile is nearly 9, and with cable covers installed on all three boost sections. Based on experiment data and aerodynamic modeling technology, a mathematical model of variation of rolling aerodynamic moment is established. Based on this mathematical model, parameter identification method is used to identify rolling aerodynamic moment coefficient induced by different cable covers from rolling angular velocity measured in different wind tunnel tests. The results indicate that the rolling aerodynamic moment induced by cable covers of secondary boost section, which are circumferential 180 ° symmetrically distributed, is most significant and ten times higher than others. Meanwhile, the maximum value appears at transonic tests. The rolling aerodynamic moment induced by cable covers of the first boost section, which are circumferential 90 °uniformly distributed, is relatively small, and its effect on motion of missile can be ignored.
[1] |
CORLETT W. A Supersonic stability and control characteristics of a cruciform missile model with delta wings and aft tail fin controls[J]. NASA Technical Memorandum, 1979: 117.
|
[2] |
HESSMAN F W. High angle of attack aerodynamic characteristics for a finless TVC missile configuration[C]//Proc of the 9th Atmospheric Flight Mechanics Conference. 1982: 1337. doi: 10.2514/6.1982-1337
|
[3] |
万音. 箭体上的凸起物对火箭气动特性的影响[J]. 宇航学报, 1989 (3): 47-53.
WAN Y. Aerodynamic characteristics the influence of protuberances of missile body on missile. Journal of Astronautics, 1989(3): 47-53.
|
[4] |
BELL M, WATTERSON J K, LISK D. A numerical study into a local protuberance interaction with a fin on A supersonic projectile[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 1092. doi: 10.2514/6.2009-1092
|
[5] |
BALASUBRAMANIAN R, SHAH V, ARORA K, et al. Numerical investigations of lateral characteristics of an air-to-air missile[J]. Journal of Aircraft, 2012, 50(1): 88–95. doi: 10.2514/1.C031761
|
[6] |
苏虹, 朱广生, 王国辉. CFD方法在小滚转力矩计算上的应用[J]. 导弹与航天运载技术, 2009(3): 37–42.
SU H, ZHU G S, WANG G H. Application of CFD in estimation of small rolling moment[J]. Missiles and Space Vehicles, 2009(3): 37–42.
|
[7] |
张鲸超. 电缆罩对弹箭气动特性非对称的影响分析[D]. 南京: 南京理工大学, 2018: 51-56.
ZHANG J C. Analysis of asymmetric aerodynamic characteristics influence of cable cover for rocket[D]. Nanjing: Nanjing University of Science and Technology, 2018: 51-56.
|
[8] |
秦永明, 田晓虎, 董金刚. 无翼/舵布局导弹小载荷滚转力矩测量研究[J]. 弹道学报, 2014, 26(2): 48–51.
QIN Y M, TIAN X H, DONG J G. Measurement study of small rolling moment on missile without wing/rudder[J]. Journal of Ballistics, 2014, 26(2): 48–51.
|
[9] |
白葵, 冯明溪, 付光明. 小不对称再入体滚转气动力测量技术[J]. 流体力学实验与测量, 2002, 16(3): 63–67,72.
BAI K, FENG M X, FU G M. Experimental technique for rolling aerodynamic of slight asymmetric re-entry body[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(3): 63–67,72.
|
[10] |
赵俊波, 梁彬, 付增良, 等. 机动式再入弹头小滚转气动力风洞试验技术[J]. 空气动力学学报, 2016, 34(1): 53–58.
ZHAO J B, LIANG B, FU Z L, et al. Experimental technique for micro rolling aerodynamics of a maneuvering reentry body[J]. Acta Aerodynamica Sinica, 2016, 34(1): 53–58.
|
[11] |
张石玉, 赵俊波, 梁彬, 等. 参数辨识技术在再入弹头自由滚转风洞试验中的应用[J]. 弹箭与制导学报, 2017, 36(6): 113–117.
ZHANG S Y, ZHAO J B, LIANG B, et al. Application of parameter identification technology in free-rolling wind tunnel tests of reentry body[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2017, 36(6): 113–117.
|
[12] |
赵俊波, 梁彬, 付增良, 等. Φ1 m高超声速风洞小滚转力矩测量技术[J]. 空气动力学学报, 2020, 38(2): 260–267.
ZHAO J B, LIANG B, FU Z L, et al. Measurement technique for micro rolling moments based on Φ1 m hypersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2020, 38(2): 260–267.
|
[13] |
梁彬, 付增良, 岳才谦, 等. 偏翼标模小滚转力矩测量与气浮轴承动态特性研究[J]. 气体物理, 2021, 6(5): 20–25.
LIANG B, FU Z L, YUE C Q, et al. Micro rolling moment measurements for asymmetric-wing standard model and dynamic characteristics of air bearing[J]. Physics of Gases, 2021, 6(5): 20–25.
|
[14] |
蒋忠东, 赵忠良, 王树民, 等. 高超声速风洞小滚转力矩测量技术研究[J]. 航空学报, 2001, 22(6): 486–490.
JIANG Z D, ZHAO Z L, WANG S M, et al. Research on the measurement techniques for micro-rolling-moment in a hypersonic wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2001, 22(6): 486–490.
|
[15] |
王树民, 谢斌, 刘伟. 带气浮轴承的小滚转力矩气动天平的研制[J]. 流体力学实验与测量, 2002, 16(1): 94–98.
WANG S M, XIE B, LIU W. The development of the wind tunnel balance measuring for tiny roll moment with gas bearing[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 94–98.
|
[16] |
唐志共, 王文正, 陈功, 等. 气动模型在现代气动试验设计中的应用研究[J]. 空气动力学学报, 2017, 35(2): 172–176.
TANG Z G, WANG W Z, CHEN G, et al. Research on the application of aerodynamic models in modern design of aerodynamic experiments[J]. Acta Aerodynamica Sinica, 2017, 35(2): 172–176.
|
[17] |
张石玉, 陈则霖, 张卫民, 等. AEKF在飞行器气动参数辨识中的适应性研究[C]//第三届高分辨率对地观测学术年会. 2014: 59-67.
ZHANG Shiyu, CHEN Zelin, ZHANG Weimin, et al. Adaptability research of adaptive extended Kalman filter in aircraft aerodynamic parameter identification [C]//Proc of the 3rd China High Resolution Earth Observation Conference. 2014: 59-67.
|
[18] |
GEMSON R, ANATHASAYANAM M. Importance of initial state covariance matrix for the parameter estimation using an adaptive extended Kalman filter[C]//Proc of the 23rd Atmospheric Flight Mechanics Conference. 1998: 4153. doi: 10.2514/6.1998-4153
|
[19] |
SARKAR A K, ANATHASAYANAM M R. Sensitivity of initial state error covariance matrix in a practical adaptive EKF [A]. AIAA paper. 2001, 4202. [19] SARKAR A K, ANANTHASAYANAM M R, VATHSAL S. Sensitivity of initial state error covariance matrix in a practical adaptive EKF[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2001: 4202. doi: 10.2514/6.2001-4202
|
[1] | ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100 |
[2] | GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113 |
[3] | ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062 |
[4] | Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163 |
[7] | Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019 |
[8] | Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017 |
[9] | YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018 |
[10] | GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002 |