Citation: | LI M, ZHAO H Y, YUAN Q, et al. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
There is still a shortage of the experimental research of boundary layer transition in compressible flows nowadays due to the difficulty in measuring the turbulence intensity. Aiming at studying the influence of the turbulence intensity on supersonic boundary layer transition, a plate model is tested in a blow-down facility (FL–24y of China Aerodynamics Research and Development Center) at Mach 3. The turbulence intensity of the flow is changed by adjusting the arrangements in the stabilization section of the wind tunnel, which covers a range from 0.82% to 1.63%. The turbulence intensity is measured by interferometric Rayleigh scattering, while the boundary layer transition is derived by infrared thermography. The CFD simulation of the plate model transition is conducted based on the γ–Reθ transition model. The results show that the transition onset position and transition end position obtained by the experiment and the simulation agree well, with the maximum relative error coefficient of 2% in the transition onset position and of 5% in the transition end position, which provides support to gain a deeper insight into the boundary layer transition mechanism in supersonic flows.
[1] |
张扣立, 常雨, 孔荣宗, 等. 温敏漆技术及其在边界层转捩测量中的应用[J]. 宇航学报, 2013, 34(6): 860–865.
ZHANG K L, CHANG Y, KONG R Z, et al. Temperature sensitive paint technique and its application in measurement of boundary layer transition[J]. Journal of Astronautics, 2013, 34(6): 860–865.
|
[2] |
刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196–212. DOI: 10.7638/kqdlxxb-2018.0017
LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017
|
[3] |
陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3): 311–337. DOI: 10.7638/kqdlxxb-2017.0030
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition: what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3): 311–337. doi: 10.7638/kqdlxxb-2017.0030
|
[4] |
LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computa-tional fluid dynamics codes[J]. AIAA Journal, 2009, 47(12): 2894–2906. doi: 10.2514/1.42362
|
[5] |
LANGTRY R B, SENUPTA K, YEH D T, et al. Extending the γ–Reθt local correlation based transition model for crossflow effects[R]. AIAA-2015-2474, 2015. doi: 10.2514/6.2015-2474
|
[6] |
ABU-GHANNAM B J, SHAW R. Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history[J]. Journal of Mechanical Engineering Science, 1980, 22(5): 213–228. doi: 10.1243/jmes_jour_1980_022_043_02
|
[7] |
袁湘江, 沙心国, 时晓天, 等. 高超声速流动中噪声与湍流度的关系[J]. 航空学报, 2020, 41(11): 123791.
YUAN X J, SHA X G, SHI X T, et al. Noise-turbulence relationship in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123791.
|
[8] |
SCHNEIDER S P. Flight data for boundary-layer transition at hypersonic and supersonic speeds[J]. Journal of Spacecraft and Rockets, 1999, 36(1): 8–20. doi: 10.2514/2.3428
|
[9] |
盛森芝, 徐月亭, 袁辉靖. 热线热膜流速计[M]. 北京: 中国科学技术出版社, 2003.
SHENG S Z, XU Y T, YUAN H J. Hot-wire hot-film anemometer[M]. Beijing: China Science and Technology Press, 2003.
|
[10] |
王彦植, 陈方, 刘洪, 等. 高速流动PIV示踪粒子跟随响应特性实验研究[J]. 实验流体力学, 2018, 32(3): 94–99. DOI: 10.11729/syltlx20170160
WANG Y Z, CHEN F, LIU H, et al. Experimental investigation on response characteristics of PIV tracer particles in high speed flow[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 94–99. doi: 10.11729/syltlx20170160
|
[11] |
SEASHOLTZ R G, BUGGELE A E, REEDER M F. Flow measurements based on Rayleigh scattering and Fabry-Perot interferometer[J]. Optics and Lasers in Engineering, 1997, 27(6): 543–570. doi: 10.1016/S0143-8166(96)00063-2
|
[12] |
FAGAN A F, ZAMAN K Q, ELAM K. Two-point dynamic Rayleigh scattering measurements in a free jet[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-3109
|
[13] |
CHEN L, YANG F R, SU T, et al. High sampling-rate measurement of turbulence velocity fluctuations in Mach 1.8 Laval jet using interferometric Rayleigh scattering[J]. Chinese Physics B, 2017, 26(2): 345–348.
|
[14] |
杨富荣, 陈力, 闫博, 等. 干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J]. 实验流体力学, 2018, 32(3): 82–86. DOI: 10.11729/syltlx20170103
YANG F R, CHEN L, YAN B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82–86. doi: 10.11729/syltlx20170103
|
[15] |
陈爱国, 陈力, 李志辉, 等. 瑞利散射测速技术在高超声速流场中应用研究[J]. 实验流体力学, 2017, 31(6): 51–55. DOI: 10.11729/syltlx20170020
CHEN A G, CHEN L, LI Z H, et al. Research on application of Rayleigh scattering velocity measurement in hypersonic low density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 51–55. doi: 10.11729/syltlx20170020
|
[16] |
ZUCCHER S, SARIC W S. Infrared thermography investigations in transitional supersonic boundary layers[J]. Experiments in Fluids, 2008, 44(1): 145–157. doi: 10.1007/s00348-007-0384-1
|
[17] |
MERTENS C, WOLF C C, GARDNER A D, et al. Advanced infrared thermography data analysis for unsteady boundary layer transition detection[J]. Measurement Science and Technology, 2020, 31(1): 015301. doi: 10.1088/1361-6501/ab3ae2
|
[18] |
耿子海, 何显中, 王勋年, 等. 红外成像非接触转捩测量低速风洞试验技术研究[J]. 实验流体力学, 2010, 24(6): 77–82. DOI: 10.3969/j.issn.1672-9897.2010.06.017
GENG Z H, HE X Z, WANG X N, et al. Non-intrusive test technique investigation of transition measurement with infrared image in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6): 77–82. doi: 10.3969/j.issn.1672-9897.2010.06.017
|
[19] |
YOON S, JAMESON A. Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025–1026. doi: 10.2514/3.10007
|
[20] |
KIM K H, KIM C, RHO O H. Methods for the accurate computations of hypersonic flows[J]. Journal of Computa-tional Physics, 2001, 174(1): 38–80. doi: 10.1006/jcph.2001.6873
|
[21] |
ANDERSON W K, THOMAS J L, VAN LEER B. Comparison of finite volume flux vector splittings for the Euler equations[J]. AIAA Journal, 1986, 24(9): 1453–1460. doi: 10.2514/3.9465
|
[22] |
沙心国, 郭跃, 纪锋, 等. 高超声速圆锥边界层失稳条纹结构实验研究[J]. 空气动力学学报, 2020, 38(1): 143–147. DOI: 10.7638/kqdlxxb-2019.0141
SHA X G, GUO Y, JI F, et al. Experimental study on instability streak structure over a hypersonic cone[J]. Acta Aerodynamica Sinica, 2020, 38(1): 143–147. doi: 10.7638/kqdlxxb-2019.0141
|