Turn off MathJax
Article Contents
XU Y, CHENG Y Z, WANG C, et al. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230095
Citation: XU Y, CHENG Y Z, WANG C, et al. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230095

Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase

doi: 10.11729/syltlx20230095
  • Received Date: 2023-07-26
  • Accepted Date: 2023-09-06
  • Rev Recd Date: 2023-08-25
  • Available Online: 2023-11-13
  • In liquid environments, nanoscopic soft materials typically adopt a cap-like shape to maintain their stability. Therefore, their morphology characterization and identification remain challenging in the liquid phase. The present study employs Atomic Force Microscopy (AFM) to achieve high-resolution imaging of subaqueous micro-nano blisters, polymer droplets, and surface bubbles. By analyzing the morphological changes in various scanning forces, the morphological characteristics of these nanoscopic soft materials are investigated. Subsequently, nanoindentation tests are conducted to analyze the interaction between the probe and the solid-liquid-gas interfaces, and their mechanical properties are obtained. The results show that under a scanning force of 0.50 nN, all blisters, droplets, and bubbles exhibited cap-like shapes. Under a higher scanning force (5.0 nN), the blister morphology remained constant, the droplet volume decreased, and the bubble disappeared. Force-distance curves at the vertex under a load of 3.0 nN indicate that all the three experienced elastic deformation. The probe has to overcome greater adhesion force to detach the droplet, while bubbles display a two-stage elastic deformation. Furthermore, due to the influence of anchoring effects, the considered objects exhibit stronger resistance to deformation near the edge of the spherical cap. The modulus of the poly (methyl methacrylate) (PMMA) nanofilm is independent of the applied load during elastic deformation caused by blister and it is estimated to be around 3.38 GPa. The interfacial tension of small-sized PDMS droplets underwater is approximately 37.3 mN/m, while the gas-liquid interfacial tension of surface bubbles is approximately 32.5 mN/m.
  • loading
  • [1]
    LUKE G P, HANNAH A S, EMELIANOV S Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets[J]. Nano Letters, 2016, 16(4): 2556–2559. doi: 10.1021/acs.nanolett.6b00108
    [2]
    TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40–51. doi: 10.1016/j.cis.2017.06.011
    [3]
    CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64–70. doi: 10.1016/j.minpro.2015.02.010
    [4]
    TORCHILIN V P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nature Reviews Drug Discovery, 2014, 13(11): 813–827. doi: 10.1038/nrd4333
    [5]
    TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and stability of nano-emulsions[J]. Advances in Colloid and Interface Science, 2004, 108-109: 303–318. doi: 10.1016/j.cis.2003.10.023
    [6]
    赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2015: 483-488. .
    [7]
    GUAN D S, CHARLAIX E, TONG P E. State and rate dependent contact line dynamics over an aging soft surface[J]. Physical Review Letters, 2020, 124(18): 188003. doi: 10.1103/physrevlett.124.188003
    [8]
    ZHANG X H, ZHANG X D, SUN J L, et al. Detection of novel gaseous states at the highly oriented pyrolytic graphite–water interface[J]. Langmuir, 2007, 23(4): 1778–1783. doi: 10.1021/la062278w
    [9]
    ZHAO B Y, SONG Y, WANG S, et al. Mechanical mapping of nanobubbles by PeakForce atomic force microscopy[J]. Soft Matter, 2013, 9(37): 8837–8843. doi: 10.1039/C3SM50942G
    [10]
    AN H J, TAN B H, OHL C D. Distinguishing nanobubbles from nanodroplets with AFM: the influence of vertical and lateral imaging forces[J]. Langmuir, 2016, 32(48): 12710–12715. doi: 10.1021/acs.langmuir.6b02519
    [11]
    JIA Y Q, ZHAO B Y, ABOUEI MEHRIZI A, et al. Identification of surface nanobubbles and resolving their size-dependent stiffness[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(9): 1–11. doi: 10.1007/s11433-020-1538-0
    [12]
    LI D Y, LIU Y L, QI L T, et al. Properties of blisters formed on polymer films and differentiating them from nanobubbles/nanodrops[J]. Langmuir, 2019, 35(8): 3005–3012. doi: 10.1021/acs.langmuir.8b03965
    [13]
    XU Y, JIA Y Q, ANTONINI C, et al. Interfacial nanoblisters formed in water serving as freestanding platforms for measuring elastic moduli of polymeric nanofilms[J]. Nano Letters, 2023, 23(7): 3078–3084. doi: 10.1021/acs.nanolett.2c05070
    [14]
    PAPALÉO R M, LEAL R, CARREIRA W H, et al. Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition[J]. Physical Review B, 2006, 74(9): 094203. doi: 10.1103/physrevb.74.094203
    [15]
    LIU G Q, HIRTZ M, FUCHS H, et al. Development of dip-pen nanolithography (DPN) and its derivatives[J]. Small, 2019, 15(21): 1900564. doi: 10.1002/smll.201900564
    [16]
    ZHOU L M, WANG S, QIU J, et al. Interfacial nanobubbles produced by long-time preserved cold water[J]. Chinese Physics B, 2017, 26(10): 106803. doi: 10.1088/1674-1056/26/10/106803
    [17]
    BUTT H J, JASCHKE M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1): 1–7. doi: 10.1088/0957-4484/6/1/001
    [18]
    EFFENDY S, ZHOU T T, EICHMAN H, et al. Blistering failure of elastic coatings with applications to corrosion resistance[J]. Soft Matter, 2021, 17(41): 9480–9498. doi: 10.1039/d1sm00986a
    [19]
    LOHSE D, ZHANG X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3): 031003. doi: 10.1103/physreve.91.031003
    [20]
    ZITZLER L, HERMINGHAUS S, MUGELE F. Capillary forces in tapping mode atomic force microscopy[J]. Physical Review B, 2002, 66(15): 155436. doi: 10.1103/physrevb.66.155436
    [21]
    KIM K S, LIN Z Q, SHROTRIYA P, et al. Iterative control approach to high-speed force-distance curve measurement using AFM: time-dependent response of PDMS example[J]. Ultramicroscopy, 2008, 108(9): 911–920. doi: 10.1016/j.ultramic.2008.03.001
    [22]
    BEAGLEHOLE D, CHRISTENSON H K. Vapor adsorption on mica and silicon: entropy effects, layering, and surface forces[J]. The Journal of Physical Chemistry, 1992, 96(8): 3395–3403. doi: 10.1021/j100187a040
    [23]
    STAFFORD C M, VOGT B D, HARRISON C, et al. Elastic moduli of ultrathin amorphous polymer films[J]. Macromolecules, 2006, 39(15): 5095–5099. doi: 10.1021/ma060790i
    [24]
    CHANG J, TOGA K B, PAULSEN J D, et al. Thickness dependence of the young’s modulus of polymer thin films[J]. Macromolecules, 2018, 51(17): 6764–6770. doi: 10.1021/acs.macromol.8b00602
    [25]
    FREEDMAN M A, ROSENBAUM A W, SIBENER S J. Atomic scattering as a probe of polymer surface and thin film dynamics[J]. Physical Review B, 2007, 75(11): 113410. doi: 10.1103/physrevb.75.113410
    [26]
    SUDERSAN P, MÜLLER M, HORMOZI M, et al. Method to measure surface tension of microdroplets using standard AFM cantilever tips[J]. Langmuir, 2023, 39(30): 10367–10374. doi: 10.1021/acs.langmuir.3c00613
    [27]
    ROCHERON M, CURTIL C, KLEIN H R. FM-AFM with a hanging fiber probe for the study of liquid-liquid interfaces[J]. Langmuir, 2022, 38(21): 6592–6601. doi: 10.1021/acs.langmuir.2c00450
    [28]
    MOODY M P, ATTARD P. Curvature-dependent surface tension of a growing droplet[J]. Physical Review Letters, 2003, 91(5): 056104. doi: 10.1103/physrevlett.91.056104
    [29]
    GUO Z J, WANG X, ZHANG X R. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019: acs. langmuir. 9b00772. doi: 10.1021/acs.langmuir.9b00772
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (105) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return