Citation: | XU Y, CHENG Y Z, WANG C, et al. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230095. |
[1] |
LUKE G P, HANNAH A S, EMELIANOV S Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets[J]. Nano Letters, 2016, 16(4): 2556–2559. doi: 10.1021/acs.nanolett.6b00108
|
[2] |
TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40–51. doi: 10.1016/j.cis.2017.06.011
|
[3] |
CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64–70. doi: 10.1016/j.minpro.2015.02.010
|
[4] |
TORCHILIN V P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nature Reviews Drug Discovery, 2014, 13(11): 813–827. doi: 10.1038/nrd4333
|
[5] |
TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and stability of nano-emulsions[J]. Advances in Colloid and Interface Science, 2004, 108-109: 303–318. doi: 10.1016/j.cis.2003.10.023
|
[6] |
赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2015: 483-488. .
|
[7] |
GUAN D S, CHARLAIX E, TONG P E. State and rate dependent contact line dynamics over an aging soft surface[J]. Physical Review Letters, 2020, 124(18): 188003. doi: 10.1103/physrevlett.124.188003
|
[8] |
ZHANG X H, ZHANG X D, SUN J L, et al. Detection of novel gaseous states at the highly oriented pyrolytic graphite–water interface[J]. Langmuir, 2007, 23(4): 1778–1783. doi: 10.1021/la062278w
|
[9] |
ZHAO B Y, SONG Y, WANG S, et al. Mechanical mapping of nanobubbles by PeakForce atomic force microscopy[J]. Soft Matter, 2013, 9(37): 8837–8843. doi: 10.1039/C3SM50942G
|
[10] |
AN H J, TAN B H, OHL C D. Distinguishing nanobubbles from nanodroplets with AFM: the influence of vertical and lateral imaging forces[J]. Langmuir, 2016, 32(48): 12710–12715. doi: 10.1021/acs.langmuir.6b02519
|
[11] |
JIA Y Q, ZHAO B Y, ABOUEI MEHRIZI A, et al. Identification of surface nanobubbles and resolving their size-dependent stiffness[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(9): 1–11. doi: 10.1007/s11433-020-1538-0
|
[12] |
LI D Y, LIU Y L, QI L T, et al. Properties of blisters formed on polymer films and differentiating them from nanobubbles/nanodrops[J]. Langmuir, 2019, 35(8): 3005–3012. doi: 10.1021/acs.langmuir.8b03965
|
[13] |
XU Y, JIA Y Q, ANTONINI C, et al. Interfacial nanoblisters formed in water serving as freestanding platforms for measuring elastic moduli of polymeric nanofilms[J]. Nano Letters, 2023, 23(7): 3078–3084. doi: 10.1021/acs.nanolett.2c05070
|
[14] |
PAPALÉO R M, LEAL R, CARREIRA W H, et al. Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition[J]. Physical Review B, 2006, 74(9): 094203. doi: 10.1103/physrevb.74.094203
|
[15] |
LIU G Q, HIRTZ M, FUCHS H, et al. Development of dip-pen nanolithography (DPN) and its derivatives[J]. Small, 2019, 15(21): 1900564. doi: 10.1002/smll.201900564
|
[16] |
ZHOU L M, WANG S, QIU J, et al. Interfacial nanobubbles produced by long-time preserved cold water[J]. Chinese Physics B, 2017, 26(10): 106803. doi: 10.1088/1674-1056/26/10/106803
|
[17] |
BUTT H J, JASCHKE M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1): 1–7. doi: 10.1088/0957-4484/6/1/001
|
[18] |
EFFENDY S, ZHOU T T, EICHMAN H, et al. Blistering failure of elastic coatings with applications to corrosion resistance[J]. Soft Matter, 2021, 17(41): 9480–9498. doi: 10.1039/d1sm00986a
|
[19] |
LOHSE D, ZHANG X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3): 031003. doi: 10.1103/physreve.91.031003
|
[20] |
ZITZLER L, HERMINGHAUS S, MUGELE F. Capillary forces in tapping mode atomic force microscopy[J]. Physical Review B, 2002, 66(15): 155436. doi: 10.1103/physrevb.66.155436
|
[21] |
KIM K S, LIN Z Q, SHROTRIYA P, et al. Iterative control approach to high-speed force-distance curve measurement using AFM: time-dependent response of PDMS example[J]. Ultramicroscopy, 2008, 108(9): 911–920. doi: 10.1016/j.ultramic.2008.03.001
|
[22] |
BEAGLEHOLE D, CHRISTENSON H K. Vapor adsorption on mica and silicon: entropy effects, layering, and surface forces[J]. The Journal of Physical Chemistry, 1992, 96(8): 3395–3403. doi: 10.1021/j100187a040
|
[23] |
STAFFORD C M, VOGT B D, HARRISON C, et al. Elastic moduli of ultrathin amorphous polymer films[J]. Macromolecules, 2006, 39(15): 5095–5099. doi: 10.1021/ma060790i
|
[24] |
CHANG J, TOGA K B, PAULSEN J D, et al. Thickness dependence of the young’s modulus of polymer thin films[J]. Macromolecules, 2018, 51(17): 6764–6770. doi: 10.1021/acs.macromol.8b00602
|
[25] |
FREEDMAN M A, ROSENBAUM A W, SIBENER S J. Atomic scattering as a probe of polymer surface and thin film dynamics[J]. Physical Review B, 2007, 75(11): 113410. doi: 10.1103/physrevb.75.113410
|
[26] |
SUDERSAN P, MÜLLER M, HORMOZI M, et al. Method to measure surface tension of microdroplets using standard AFM cantilever tips[J]. Langmuir, 2023, 39(30): 10367–10374. doi: 10.1021/acs.langmuir.3c00613
|
[27] |
ROCHERON M, CURTIL C, KLEIN H R. FM-AFM with a hanging fiber probe for the study of liquid-liquid interfaces[J]. Langmuir, 2022, 38(21): 6592–6601. doi: 10.1021/acs.langmuir.2c00450
|
[28] |
MOODY M P, ATTARD P. Curvature-dependent surface tension of a growing droplet[J]. Physical Review Letters, 2003, 91(5): 056104. doi: 10.1103/physrevlett.91.056104
|
[29] |
GUO Z J, WANG X, ZHANG X R. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019: acs. langmuir. 9b00772. doi: 10.1021/acs.langmuir.9b00772
|
[1] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[2] | WANG Chao, YUE Tingrui, WAN Zhenhua, SUN Dejun. Experimental study of the effects of confinement on self-sustained oscillations and noise radiation in three-dimensional open cavities[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 10-18. DOI: 10.11729/syltlx20210050 |
[3] | LIU Xiyan, YUAN Xulong, WANG Ying, LUO Kai, WANG Xinyu. Experimental study on time-delay effect of unsteady hydrodynamics of the supercavitating vehicle in water tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 26-33. DOI: 10.11729/syltlx20210039 |
[4] | MA Wenyong, MA Chengcheng, WANG Caiyu, HAN Xiaole, GAO Fei. Wind tunnel experimental study on the wind load interference effect of solar panel arrays[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 19-25. DOI: 10.11729/syltlx20200127 |
[5] | XU Binbin, WU Chaojun, WANG Xue. Research on the effect of tubing on turbulence in inlet wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 52-58. DOI: 10.11729/syltlx20190118 |
[6] | LI Weihao, LI Weibin, YI Xian, WANG Yingyu. A correction method of icing testing scaling law with dynamic effects[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 97-103. DOI: 10.11729/syltlx20190166 |
[7] | Li Yu, Zhu Guangsheng, Nie Chunsheng, Tan Meijing, Chen Weihua, Cao Zhanwei. Study on the influence of cold spot effect on the thermal measurement characteristics of circular foil heat flow sensor in hypersonic convection environment[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 39-44. DOI: 10.11729/syltlx20180110 |
[8] | Ke Shitang, Yu Wenlin, Wang Hao, Zhu Peng, Yu Wei, Du Lingyun. Research on interference effect of super large cooling towers with two tower combinations under complex mountains[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 61-71. DOI: 10.11729/syltlx20180044 |
[9] | Li Xingwei, Li Cong, Xu Chuanbao, Li Shengwen. Experimental research on the coupling effect of propeller slipstream and flat tail deep stall on aerodynamic characteristics of airplane[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 84-89. DOI: 10.11729/syltlx20170068 |
[10] | Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124 |
1. |
罗杰,马昊军,王国林,肖学仁. 激光诱导荧光技术在高焓空气氮原子测量中的应用. 光谱学与光谱分析. 2021(07): 2135-2141 .
![]() | |
2. |
闫楠楠. 原子荧光技术在水环境检测中的应用研究. 资源节约与环保. 2021(10): 51-53 .
![]() | |
3. |
乐吴生,黄生洪. 高热流条件下翅片凹腔内超汽化换热的微距PLIF观测. 实验力学. 2019(04): 591-599 .
![]() |