GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104.
Citation: GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104.

Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control

More Information
  • Received Date: October 09, 2022
  • Revised Date: October 21, 2022
  • Accepted Date: November 02, 2022
  • Available Online: December 25, 2022
  • The complex flow field structure and the interaction between vortex structures make the flying wing configuration aircraft prone to transverse uncommanded motion at a high angle of attack. To suppress the uncommanded motion, two sets of jet actuators are arranged on the vehicle using two existing active jet control techniques, the control effect of the actuators is verified through wind tunnel force measurement experiments, and the mutual coupling relationship between the two sets of jet actuators is clarified. A virtual flight experiment is conducted in the wind tunnel to capture the uncommanded motion of the flying wing configuration aircraft in the transverse direction, and two methods, PID and deep reinforcement learning, are applied to suppress the uncommanded motion in this kind of highly coupled and nonlinear problem. The wind tunnel experiments show that the deep reinforcement learning method is more effective in controlling the highly coupled and nonlinear problem, and the trained intelligent model can effectively suppress the transverse uncommanded motion of the flying wing configuration aircraft model.
  • [1]
    BOWLUS J, MULTHOPP D, BANDA S, et al. Challenges and opportunities in tailless aircraft stability and control[C]//Proc of the Guidance, Navigation, and Control Conference. 1997: 3830. doi: 10.2514/6.1997-3830
    [2]
    ERICSSON L E. Revisiting unresolved dynamic stall phenomena[J]. Journal of Aircraft, 2000, 37(6): 1117–1122. doi: 10.2514/2.2722
    [3]
    GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2004: 5276. doi: 10.2514/6.2004-5276
    [4]
    王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性研究[J]. 航空学报.doi: 10.7527/S1000-6893.2021.26449.

    WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica. doi: 10.7527/S1000-6893. 2021.26449.
    [5]
    NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185–248. doi: 10.1016/S0376-0421(02)00088-X
    [6]
    王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1–25. DOI: 10.7638/kqdlxxb-2021.0306

    WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306
    [7]
    周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. DOI: 10.7527/S1000-6893.2019.23422

    ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422
    [8]
    GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal, 2018, 56(5): 1731–1749. doi: 10.2514/1.J056586
    [9]
    冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 145–156. DOI: 10.7527/S1000-6893.2022.27353

    FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353
    [10]
    LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
    [11]
    WILLIAMS D R, SEIDEL J. Crossed-actuation AFC for lateral-directional control of an ICE-101/saccon UCAV[C]//Proc of the 8th AIAA Flow Control Conference. 2016: 3167. doi: 10.2514/6.2016-3167
    [12]
    赵霞, 秦燕华. 一种飞翼布局横航向特性的控制研究[J]. 空气动力学学报, 2008, 26(2): 234–238.

    ZHAO X, QIN Y H. An investigation on controlling lateral characteristics for a flying wing configuration[J]. Acta Aerodynamica Sinica, 2008, 26(2): 234–238.
    [13]
    PEDREIRO N, ROCK S M, CELIK Z Z, et al. Roll-yaw control at high angle of attack by forebody tangential blowing[J]. Journal of Aircraft, 1998, 35(1): 69–77. doi: 10.2514/2.2261
    [14]
    孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. DOI: 10.7527/S1000-6893.2015.2020.24080

    SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080
    [15]
    张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. DOI: 10.7257/S1000-6893.2020.24689

    ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689
    [16]
    RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865: 281–302. doi: 10.1017/jfm.2019.62
    [17]
    FAN D X, YANG L, TRIANTAFYLLOU M S, et al. Reinforcement learning for active flow control in experiments[J]. . arXiv preprint arXiv: 2003.03419, 2020.
    [18]
    姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. DOI: 10.11729/syltlx20210085

    YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
    [19]
    CUMMINGS R, SCHUETTE A. An integrated computational/experimental approach to UCAV stability & control estimation: overview of NATO RTO AVT-161[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4392. doi: 10.2514/6.2010-4392
    [20]
    LOESER T, VICROY D, SCHUETTE A. SACCON static wind tunnel tests at DNW-NWB and 14´ × 22´ NASA LaRC[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4393. doi: 10.2514/6.2010-4393
    [21]
    DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99: 105766. doi: 10.1016/j.ast.2020.105766
    [22]
    ZHU J C, SHI Z W, SUN Q B, et al. Yaw control of a flying-wing unmanned aerial vehicle based on reverse jet control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(6): 1237–1255. doi: 10.1177/0954410019899513
    [23]
    DONG Y Z, SHI Z W, CHEN K, et al. Self-learned suppression of roll oscillations based on model-free reinforcement learning[J]. Aerospace Science and Technology, 2021, 116: 106850. doi: 10.1016/j.ast.2021.106850
  • Related Articles

    [1]ZHOU Zhiteng, WANG Shizhao. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56. DOI: 10.11729/syltlx20230072
    [2]ZHANG Jing, SUN Wenju, NI Wenbin, WEI Wei, ZHANG Jiang, YANG Wubing, LI Qingyong. Study on deep learning-based anomaly detection method for wind tunnel balance force data[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 67-73. DOI: 10.11729/syltlx20210061
    [3]WANG Chao, YUE Tingrui, WAN Zhenhua, SUN Dejun. Experimental study of the effects of confinement on self-sustained oscillations and noise radiation in three-dimensional open cavities[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 10-18. DOI: 10.11729/syltlx20210050
    [4]ZHOU Hao, LI Yi, LAN Shengwei, LIU Hai. Predict the mass distribution of hypervelocity impact debris using deep learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 73-78. DOI: 10.11729/syltlx20210125
    [5]YAO Zhangyi, SHI Zhiwei, DONG Yizhang. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55-64. DOI: 10.11729/syltlx20210085
    [6]DU Jinlin, ZOU Zhengping, HUANG Lin, XUAN Liming, WANG Yuanpeng. Experimental and numerical study of squealer tip flow field considering relative casing motion[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 22-36, 82. DOI: 10.11729/syltlx20200073
    [7]YANG Meng, HUANG Da. The unsteady aerodynamic characteristics of coupled motion at high angle of attack[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 19-22. DOI: 10.3969/j.issn.1672-9897.2011.06.004
    [8]YANG Dang-guo, FAN Zhao-lin, LI Jian-qiang, LUO Xin-fu, JIANG Wei-min. Suppression effect of rear-face angle of cavity on aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 22-25. DOI: 10.3969/j.issn.1672-9897.2010.05.005
    [9]The visualization of vortex field of unsteady motion for 2 - D airfoil--2 pitching motion and heaving/pitching composite motion[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 38-42,57. DOI: 10.3969/j.issn.1672-9897.2004.04.009
    [10]The visualization of vortex field of unsteady motion for 2-D foil--heaving motion[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(2): 71-76. DOI: 10.3969/j.issn.1672-9897.2004.02.016

Catalog

    Article Metrics

    Article views (291) PDF downloads (37) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close