Citation: | GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104. |
[1] |
BOWLUS J, MULTHOPP D, BANDA S, et al. Challenges and opportunities in tailless aircraft stability and control[C]//Proc of the Guidance, Navigation, and Control Conference. 1997: 3830. doi: 10.2514/6.1997-3830
|
[2] |
ERICSSON L E. Revisiting unresolved dynamic stall phenomena[J]. Journal of Aircraft, 2000, 37(6): 1117–1122. doi: 10.2514/2.2722
|
[3] |
GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2004: 5276. doi: 10.2514/6.2004-5276
|
[4] |
王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性研究[J]. 航空学报.doi: 10.7527/S1000-6893.2021.26449.
WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica. doi: 10.7527/S1000-6893. 2021.26449.
|
[5] |
NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185–248. doi: 10.1016/S0376-0421(02)00088-X
|
[6] |
王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1–25. DOI: 10.7638/kqdlxxb-2021.0306
WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306
|
[7] |
周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. DOI: 10.7527/S1000-6893.2019.23422
ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422
|
[8] |
GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal, 2018, 56(5): 1731–1749. doi: 10.2514/1.J056586
|
[9] |
冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 145–156. DOI: 10.7527/S1000-6893.2022.27353
FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353
|
[10] |
LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
|
[11] |
WILLIAMS D R, SEIDEL J. Crossed-actuation AFC for lateral-directional control of an ICE-101/saccon UCAV[C]//Proc of the 8th AIAA Flow Control Conference. 2016: 3167. doi: 10.2514/6.2016-3167
|
[12] |
赵霞, 秦燕华. 一种飞翼布局横航向特性的控制研究[J]. 空气动力学学报, 2008, 26(2): 234–238.
ZHAO X, QIN Y H. An investigation on controlling lateral characteristics for a flying wing configuration[J]. Acta Aerodynamica Sinica, 2008, 26(2): 234–238.
|
[13] |
PEDREIRO N, ROCK S M, CELIK Z Z, et al. Roll-yaw control at high angle of attack by forebody tangential blowing[J]. Journal of Aircraft, 1998, 35(1): 69–77. doi: 10.2514/2.2261
|
[14] |
孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. DOI: 10.7527/S1000-6893.2015.2020.24080
SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080
|
[15] |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. DOI: 10.7257/S1000-6893.2020.24689
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689
|
[16] |
RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865: 281–302. doi: 10.1017/jfm.2019.62
|
[17] |
FAN D X, YANG L, TRIANTAFYLLOU M S, et al. Reinforcement learning for active flow control in experiments[J]. . arXiv preprint arXiv: 2003.03419, 2020.
|
[18] |
姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. DOI: 10.11729/syltlx20210085
YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
|
[19] |
CUMMINGS R, SCHUETTE A. An integrated computational/experimental approach to UCAV stability & control estimation: overview of NATO RTO AVT-161[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4392. doi: 10.2514/6.2010-4392
|
[20] |
LOESER T, VICROY D, SCHUETTE A. SACCON static wind tunnel tests at DNW-NWB and 14´ × 22´ NASA LaRC[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4393. doi: 10.2514/6.2010-4393
|
[21] |
DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99: 105766. doi: 10.1016/j.ast.2020.105766
|
[22] |
ZHU J C, SHI Z W, SUN Q B, et al. Yaw control of a flying-wing unmanned aerial vehicle based on reverse jet control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(6): 1237–1255. doi: 10.1177/0954410019899513
|
[23] |
DONG Y Z, SHI Z W, CHEN K, et al. Self-learned suppression of roll oscillations based on model-free reinforcement learning[J]. Aerospace Science and Technology, 2021, 116: 106850. doi: 10.1016/j.ast.2021.106850
|