Turn off MathJax
Article Contents
GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104
Citation: GE Z R,SHI Z W,DONG Y Z,et al. Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220104

Roll-yaw control of flying wing aircraft at a high angle of attack based on jet control

doi: 10.11729/syltlx20220104
  • Received Date: 2022-10-10
  • Accepted Date: 2022-11-03
  • Rev Recd Date: 2022-10-22
  • Available Online: 2022-12-26
  • The complex flow field structure and the interaction between vortex structures make the flying wing configuration aircraft prone to transverse uncommanded motion at a high angle of attack. To suppress the uncommanded motion, two sets of jet actuators are arranged on the vehicle using two existing active jet control techniques, the control effect of the actuators is verified through wind tunnel force measurement experiments, and the mutual coupling relationship between the two sets of jet actuators is clarified. A virtual flight experiment is conducted in the wind tunnel to capture the uncommanded motion of the flying wing configuration aircraft in the transverse direction, and two methods, PID and deep reinforcement learning, are applied to suppress the uncommanded motion in this kind of highly coupled and nonlinear problem. The wind tunnel experiments show that the deep reinforcement learning method is more effective in controlling the highly coupled and nonlinear problem, and the trained intelligent model can effectively suppress the transverse uncommanded motion of the flying wing configuration aircraft model.
  • loading
  • [1]
    BOWLUS J, MULTHOPP D, BANDA S, et al. Challenges and opportunities in tailless aircraft stability and control[C]//Proc of the Guidance, Navigation, and Control Conference. 1997: 3830. doi: 10.2514/6.1997-3830
    [2]
    ERICSSON L E. Revisiting unresolved dynamic stall phenomena[J]. Journal of Aircraft, 2000, 37(6): 1117–1122. doi: 10.2514/2.2722
    [3]
    GREENWELL D. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft[C]//Proc of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. 2004: 5276. doi: 10.2514/6.2004-5276
    [4]
    王方剑, 解克, 刘金, 等. 小展弦比飞翼标模非定常流动及自由摇滚特性研究[J]. 航空学报.doi: 10.7527/S1000-6893.2021.26449.

    WANG F J, XIE K, LIU J, et al. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing[J]. Acta Aeronautica et Astronautica Sinica. doi: 10.7527/S1000-6893. 2021.26449.
    [5]
    NELSON R C, PELLETIER A. The unsteady aerodynamics of slender wings and aircraft undergoing large amplitude maneuvers[J]. Progress in Aerospace Sciences, 2003, 39(2-3): 185–248. doi: 10.1016/S0376-0421(02)00088-X
    [6]
    王海峰, 展京霞, 陈科, 等. 战斗机大迎角气动特性研究技术的发展与应用[J]. 空气动力学学报, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306

    WANG H F, ZHAN J X, CHEN K, et al. Development and application of aerodynamic research technologies for fighters at high angle of attack[J]. Acta Aerodynamica Sinica, 2022, 40(1): 1–25. doi: 10.7638/kqdlxxb-2021.0306
    [7]
    周铸, 余永刚, 刘刚, 等. 飞翼布局组合舵面航向控制特性综合研究[J]. 航空学报, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422

    ZHOU Z, YU Y G, LIU G, et al. Comprehensive study on yaw control characteristic of combined control surfaces of flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 523422. doi: 10.7527/S1000-6893.2019.23422
    [8]
    GURSUL I, WANG Z J. Flow control of tip/edge vortices[J]. AIAA Journal, 2018, 56(5): 1731–1749. doi: 10.2514/1.J056586
    [9]
    冯立好, 魏凌云, 董磊, 等. 飞翼布局飞机耦合运动失稳的主动流动控制[J]. 航空学报, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353

    FENG L H, WEI L Y, DONG L, et al. Active flow control for coupled motion instability of flying-wing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 145–156. doi: 10.7527/S1000-6893.2022.27353
    [10]
    LUO Z B, ZHAO Z J, LIU J F, et al. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test[J]. Chinese Journal of Aeronautics, 2022, 35(8): 1–6. doi: 10.1016/j.cja.2021.08.015
    [11]
    WILLIAMS D R, SEIDEL J. Crossed-actuation AFC for lateral-directional control of an ICE-101/saccon UCAV[C]//Proc of the 8th AIAA Flow Control Conference. 2016: 3167. doi: 10.2514/6.2016-3167
    [12]
    赵霞, 秦燕华. 一种飞翼布局横航向特性的控制研究[J]. 空气动力学学报, 2008, 26(2): 234–238.

    ZHAO X, QIN Y H. An investigation on controlling lateral characteristics for a flying wing configuration[J]. Acta Aerodynamica Sinica, 2008, 26(2): 234–238.
    [13]
    PEDREIRO N, ROCK S M, CELIK Z Z, et al. Roll-yaw control at high angle of attack by forebody tangential blowing[J]. Journal of Aircraft, 1998, 35(1): 69–77. doi: 10.2514/2.2261
    [14]
    孙全兵, 史志伟, 耿玺, 等. 基于主动流动控制技术的无舵面飞翼布局飞行器姿态控制[J]. 航空学报, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080

    SUN Q B, SHI Z W, GENG X, et al. Attitude control of flying wing aircraft without control surfaces based on active flow control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124080. doi: 10.7527/S1000-6893.2015.2020.24080
    [15]
    张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689

    ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689. doi: 10.7257/S1000-6893.2020.24689
    [16]
    RABAULT J, KUCHTA M, JENSEN A, et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics, 2019, 865: 281–302. doi: 10.1017/jfm.2019.62
    [17]
    FAN D X, YANG L, TRIANTAFYLLOU M S, et al. Reinforcement learning for active flow control in experiments[J]. . arXiv preprint arXiv: 2003.03419, 2020.
    [18]
    姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085

    YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
    [19]
    CUMMINGS R, SCHUETTE A. An integrated computational/experimental approach to UCAV stability & control estimation: overview of NATO RTO AVT-161[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4392. doi: 10.2514/6.2010-4392
    [20]
    LOESER T, VICROY D, SCHUETTE A. SACCON static wind tunnel tests at DNW-NWB and 14´ × 22´ NASA LaRC[C]//Proc of the 28th AIAA Applied Aerodynamics Conference. 2010: 4393. doi: 10.2514/6.2010-4393
    [21]
    DONG Y Z, SHI Z W, CHEN K, et al. The suppression of flying-wing roll oscillations with open and closed-loop spanwise blowing[J]. Aerospace Science and Technology, 2020, 99: 105766. doi: 10.1016/j.ast.2020.105766
    [22]
    ZHU J C, SHI Z W, SUN Q B, et al. Yaw control of a flying-wing unmanned aerial vehicle based on reverse jet control[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2020, 234(6): 1237–1255. doi: 10.1177/0954410019899513
    [23]
    DONG Y Z, SHI Z W, CHEN K, et al. Self-learned suppression of roll oscillations based on model-free reinforcement learning[J]. Aerospace Science and Technology, 2021, 116: 106850. doi: 10.1016/j.ast.2021.106850
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (201) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return