Turn off MathJax
Article Contents
LIU Z Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220016
Citation: LIU Z Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220016

Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure

doi: 10.11729/syltlx20220016
  • Received Date: 2022-02-18
  • Accepted Date: 2022-04-18
  • Rev Recd Date: 2022-04-10
  • Available Online: 2023-08-29
  • The drag reduction mechanism of the wall turbulent boundary layer with superhydrophobic micro-riblets and micro-convex posts is studied experimentally. The instantaneous velocity field in the turbulent boundary layer of the hydrophilic wall, superhydrophobic micro-riblets wall and micro-convex posts wall is measured by high time resolution particle image velocimetry (TRPIV). The frictional shear stress of the three kinds of walls is compared and analyzed. It is found that the superhydrophobic walls achieve drag reduction effect. However, the drag reduction rate of the superhydrophobic micro-riblets wall is higher than that of the superhydrophobic micro-convex posts wall, and the drag reduction rate of the superhydrophobic micro-riblets wall is 13.8%, while the drag reduction rate of the superhydrophobic micro-convex posts wall is 10.2%. Through comparison and analysis on the three kinds of wall corresponding average velocity profile in the turbulent boundary layer, turbulence intensity and Reynolds shear stress profile, it is found that the fluid indeed has sliding speed in the superhydrophobic wall, and in the area of the same normal height at $15 < {y^ + } < 100$, the streamwise turbulence intensity corresponding to the hydrophilic wall, superhydrophobic micro-riblets and micro-convex posts wall decreases successively. At the same time, in the area of the same normal height at $30 < {y^ + } < 80$,the wall-normal turbulence intensity of the superhydrophobic micro-convex posts, hydrophilic wall and superhydrophobic micro-riblets wall decrease successively. Over the whole wall-normal height, the maximum values of Reynolds shear stress on the hydrophilic wall, superhydrophobic micro-convex posts and micro-riblets wall decrease successively. Based on the conditional sampling and phase averaging of the spanwise vortex identified by the ${\Lambda _{{\text{ci}}}}$criterion, it is found that the amplitude of the fourth quadrant event induced by the spanwise vortex of the superhydrophobic micro-riblets wall weakens nearby at ${y^{\text{ + }}} \approx 63$, which leads to the intensity of its sweep events decreasing, and then the drag reduction is realized. In order to further analyze the turbulent fluctuation energy, the instantaneous fluctuation velocity of the whole turbulent boundary layer is summed in time and over the streamwise-normal space by using Proper Orthogonal Decomposition and it is dimensionless to characterize the fluctuation degree of the flow field. The results show that the spanwise slip characteristics of the superhydrophobic micro-convex posts increase the drag and weaken the drag reduction effect caused by the streamwise slip. The streamwise slip characteristics of the superhydrophobic micro-riblets wall can effectively suppress turbulence fluctuation and achieve better drag reduction effects.
  • loading
  • [1]
    LIU M, MA L R. Drag reduction methods at solid-liquid interfaces[J]. Friction, 2022, 10(4): 491–515. doi: 10.1007/s40544-021-0502-8
    [2]
    WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230–8293. doi: 10.1021/cr400083y
    [3]
    ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42: 89–109. doi: 10.1146/annurev-fluid-121108-145558
    [4]
    MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765
    [5]
    ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261–304. doi: 10.1146/annurev.fl.23.010191.001401
    [6]
    WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45: 409–436. doi: 10.1146/annurev-fluid-120710-101204
    [7]
    ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1–54. doi: 10.1017/s0022112000001580
    [8]
    ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 041301. doi: 10.1063/1.2717527
    [9]
    DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885
    [10]
    KITAGAWA A, SHIOMI Y, MURAI Y, et al. Transient velocity profiles and drag reduction due to air-filled superhydrophobic grooves[J]. Experiments in Fluids, 2020, 61(11): 1–11. doi: 10.1007/s00348-020-03070-x
    [11]
    LEE C, CHOI C H, KIM C J “. Structured surfaces for a giant liquid slip[J]. Physical Review Letters, 2008, 101(6): 064501. doi: 10.1103/physrevlett.101.064501
    [12]
    LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176. doi: 10.1007/s00348-016-2264-z
    [13]
    XU M C, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13(3): 034056. doi: 10.1103/physrevapplied.13.034056
    [14]
    PARK H, CHOI C H, KIM C J. Superhydrophobic drag reduction in turbulent flows: a critical review[J]. Experiments in Fluids, 2021, 62(11): 229. doi: 10.1007/s00348-021-03322-4
    [15]
    LING H J, SRINIVASAN S, GOLOVIN K, et al. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2016, 801: 670–703. doi: 10.1017/jfm.2016.450
    [16]
    ABU ROWIN W, GHAEMI S. Streamwise and spanwise slip over a superhydrophobic surface[J]. Journal of Fluid Mechanics, 2019, 870: 1127–1157. doi: 10.1017/jfm.2019.225
    [17]
    姚朝晖, 张静娴, 郝鹏飞. 表面微纳结构对气-水界面稳定性和流动减阻的影响[J]. 实验流体力学, 2020, 34(2): 73–79.

    YAO Z H, ZHANG J X, HAO P F. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73–79.
    [18]
    VAJDI HOKMABAD B, GHAEMI S. Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure[J]. Physics of Fluids, 2016, 28(1): 015112. doi: 10.1063/1.4940325
    [19]
    WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8): 085106. doi: 10.1063/1.3213607
    [20]
    MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31–41. doi: 10.1017/s0022112008004916
    [21]
    JELLY T O, JUNG S Y, ZAKI T A. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture[J]. Physics of Fluids, 2014, 26(9): 095102. doi: 10.1063/1.4894064
    [22]
    MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): L55–L58. doi: 10.1063/1.1755723
    [23]
    SEO J, GARCÍA-MAYORAL R, MANI A. Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 783: 448–473. doi: 10.1017/jfm.2015.573
    [24]
    BUSSE A, SANDHAM N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5): 055111. doi: 10.1063/1.4719780
    [25]
    CLAUSER F H. The turbulent boundary layer[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1956: 1-51. doi: 10.1016/s0065-2156(08)70370-3
    [26]
    WEI T, SCHMIDT R, MCMURTRY P. Comment on the Clauser chart method for determining the friction velocity[J]. Experiments in Fluids, 2005, 38(5): 695–699. doi: 10.1007/s00348-005-0934-3
    [27]
    ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125
    [28]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
    [29]
    DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160
    [30]
    BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539–575. doi: 10.1146/annurev.fl.25.010193.002543
    [31]
    MARUSIC I, MONTY J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51: 49–74. doi: 10.1146/annurev-fluid-010518-040427
    [32]
    MOIN P. Revisiting Taylor’s hypothesis[J]. Journal of Fluid Mechanics, 2009, 640: 1–4. doi: 10.1017/s0022112009992126
    [33]
    KROGSTAD P Å, KASPERSEN J H, RIMESTAD S. Convection velocities in a turbulent boundary layer[J]. Physics of Fluids, 1998, 10(4): 949–957. doi: 10.1063/1.869617
    [34]
    DENNIS D J C, NICKELS T B. On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 614: 197–206. doi: 10.1017/s0022112008003352
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (204) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return