Turn off MathJax
Article Contents
FANG B H,LI M,HUANG D P. Research on the position control of double-pass schlieren component based on visual feedback[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220068
Citation: FANG B H,LI M,HUANG D P. Research on the position control of double-pass schlieren component based on visual feedback[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220068

Research on the position control of double-pass schlieren component based on visual feedback

doi: 10.11729/syltlx20220068
  • Received Date: 2022-08-02
  • Accepted Date: 2022-09-05
  • Rev Recd Date: 2022-08-31
  • Available Online: 2022-10-09
  • The traditional mechanical method of debugging the double-pass schlieren system exhibits the problems that the fine positioning of the working position of the spherical mirror mechanism cannot be ensured, and the optical paths cannot be completely coincided after passing through the flow field twice in the experimental application in the hypersonic low density wind tunnel. Here, a novel double-pass schlieren system based on visual feedback was developed. The system via absolute encoder instruction control the AC servo motor to adjust the position of the spherical mirror mechanism. Moreover, the pitch and left-right deflection of the spherical mirror can be adjusted by the schlieren image quality evaluation results provided by the machine vision system(visual information feedback). The position control system of double-pass schlieren parts based on visual feedback realizes the automatic positioning closed-loop control of the double-pass schlieren spherical mirror mechanism, and ensures that the light paths overlap as much as possible after passing through the flow field twice to eliminate ghosting during imaging of the model flow field(the definition of the flow field image is improved by 2.2 times compared with that obtained by the traditional method).
  • loading
  • [1]
    李桂春. 风洞试验光学测量方法[M]. 北京: 国防工业出版社, 2008.

    LI G C. Optical instrumentation for wind tunnel testing[M]. Beijing: National Defense Industry Press, 2008.
    [2]
    中国人民解放军总装备部军事训练教材编辑工作委员会. 流动显示技术[M]. 北京: 国防工业出版社, 2002: 105-131.
    [3]
    沙心国, 文帅, 袁明论, 等. 高超声速脉冲风洞辉光放电流场显示技术[C]//第十八届全国等离子体科学技术会议摘要集. 2017: 78.
    [4]
    李明,祝智伟,杨彦广,等. 双光程纹影在高超声速流场显示中的应用[J]. 红外与激光工程,2017,46(2):171-175. doi: 10.3788/IRLA201746.0211001

    LI M,ZHU Z W,YANG Y G,et al. Flow visualization using double-pass schlieren technique in hypersonic flow[J]. Infrared and Laser Engineering,2017,46(2):171-175. doi: 10.3788/IRLA201746.0211001
    [5]
    GOTTLLEB J. Evaluation of a double-pass schlieren system[G]. Suffield Memorandum, 1968: 54-67
    [6]
    李桂春. 气动光学[M]. 北京: 国防工业出版社, 2006: 411-415.

    LI G C. Aero-optics[M]. Beijing: National Defense Industry Press, 2006: 411-415.
    [7]
    曾海飞,韩昌佩,李凯,等. 改进的梯度阈值图像清晰度评价算法[J]. 激光与光电子学进展,2021,58(22):285-293.

    ZENG H F,HAN C P,LI K,et al. Improved gradient threshold image sharpness evaluation algorithm[J]. Laser & Optoelectronics Progress,2021,58(22):285-293.
    [8]
    金德华. 基于附加绝对值编码器和伺服驱动的定位系统[J]. 设备管理与维修,2020(1):81-83. doi: 10.16621/j.cnki.issn1001-0559.2020.01.38

    JIN D H. Positioning system based on additional absolute encoder and servo driver[J]. Plant Maintenance Engineering,2020(1):81-83. doi: 10.16621/j.cnki.issn1001-0559.2020.01.38
    [9]
    王振启,杨支海,吕艳琼,等. 基于增量式编码器的运板小车定位控制系统设计[J]. 中国矿业,2021,30(S1):170-174. doi: 10.12075/j.issn.1004-4051.2021.S1.052

    WANG Z Q,YANG Z H,LYU Y Q,et al. Design of positioning control system of the cathode-plate transporting device based on incremental encoder[J]. China Mining Magazine,2021,30(S1):170-174. doi: 10.12075/j.issn.1004-4051.2021.S1.052
    [10]
    胡彩霞,刘璐,宋伟伟. 基于PLC的货物定位控制系统设计[J]. 电子测试,2020(11):37-39. doi: 10.16520/j.cnki.1000-8519.2020.11.014

    HU C X,LIU L,SONG W W. Design of cargo positioning control system based on PLC[J]. Electronic Test,2020(11):37-39. doi: 10.16520/j.cnki.1000-8519.2020.11.014
    [11]
    宋立. 基于PLC的步进电机闭环控制系统[J]. 中国高新科技,2019(24):86-88. doi: 10.13535/j.cnki.10-1507/n.2019.24.30

    SONG L. Closed-loop control system of stepping motor based on PLC[J]. China High-Tech,2019(24):86-88. doi: 10.13535/j.cnki.10-1507/n.2019.24.30
    [12]
    付海军,李小艳. 绝对式编码器的应用[J]. 微电机,2013,46(6):91-93. doi: 10.15934/j.cnki.micromotors.2013.06.003

    FU H J,LI X Y. Application of absolute encoder[J]. Micromotors,2013,46(6):91-93. doi: 10.15934/j.cnki.micromotors.2013.06.003
    [13]
    李雪,江旻珊. 光学显微成像系统图像清晰度评价函数的对比[J]. 光学仪器,2018,40(1):28-38. doi: 10.3969/j.issn.1005-5630.2018.01.006

    LI X,JIANG M S. A comparison of sharpness functions based on microscopes[J]. Optical Instruments,2018,40(1):28-38. doi: 10.3969/j.issn.1005-5630.2018.01.006
    [14]
    冯精武,喻擎苍,芦宁,等. 调焦系统中数字图像清晰度评价函数的研究[J]. 机电工程,2011,28(3):354-356,368. doi: 10.3969/j.issn.1001-4551.2011.03.023

    FENG J W,YU Q C,LU N,et al. Definition evaluation function of digital image in auto-focusing system[J]. Journal of Mechanical & Electrical Engineering,2011,28(3):354-356,368. doi: 10.3969/j.issn.1001-4551.2011.03.023
    [15]
    张丰收,李斯文,胡志刚,等. 一种改进的Sobel梯度函数自动对焦评价算法[J]. 光学技术,2017,43(3):234-238. doi: 10.13741/j.cnki.11-1879/o4.2017.03.009

    ZHANG F S,LI S W,HU Z G,et al. An improved auto-focus evaluating algorithm based on Sobel gradient function[J]. Optical Technique,2017,43(3):234-238. doi: 10.13741/j.cnki.11-1879/o4.2017.03.009
    [16]
    GOZALEZ R C, WOODS R E. 数字图像处理[M]. 阮秋琦, 阮宇智, 译. 4版. 北京: 电子工业出版社, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (192) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return