Citation: | YANG Y, YU Z F, XU J Y, et al. Measuring method of ablative model’s temperature and emissivity based on CCD camera image[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 1-7. DOI: 10.11729/syltlx20230085 |
To solve the precise measurement problem of ablative model’s temperature and material emissivity, this paper has presented a method to measure ablative model’s surface emissivity in high temperature flow field based on CCD camera images. Ablative model’s image is obtained through CCD camera, for preprocessing, the image is denoised by non-local mean filtering algorithm and segmented based on its color information. Then the CCD camera’s spectra response coefficient is standardized through basalt blunt body ablation test, based on image processing and coefficient standardization result, the temperature of basalt blunt body and ablative plate model is simulated by colorimetric thermometry. Finally, ablative model’s surface emissivity is determined by the correlation between emissivity and temperature.
[1] |
KURIHARA N, NISHIKAWA M, WATANABE A, et al. A combustion diagnosis method for pulverized coal boilers using flame-image recognition technology[J]. IEEE Transactions on Energy Conversion, 1986(2): 99–103. doi: 10.1109/TEC.1986.4765706
|
[2] |
RENIER E, MERIAUDEAU F, SUZEAU P, et al. CCD temperature imaging: applications in steel industry[C]// Proceedings of the 1996 IEEE IECON. 1996: 1295-1300. doi: 10.1109/IECON.1996.566066
|
[3] |
孙元, 彭小奇, 严军. 基于彩色CCD的高温场辐射测温方法[J]. 仪器仪表学报, 2011, 32(11): 2579–2584.
SUN Y, PENG X Q, YAN J. High-temperature field radiation thermometry based on colored CCD[J]. Chinese Journal of Scientific Instrument, 2011, 32(11): 2579–2584.
|
[4] |
KIRMSE C, CHAVES H. Measurement of the average two-dimensional surface temperature distribution of drops in a melt atomization process[J]. Journal of Thermal Spray Technology, 2015, 24(4): 690–695. doi: 10.1007/s11666-015-0217-3
|
[5] |
BÜNGER L, ANHALT K, TAUBERT R D, et al. Traceability of a CCD-camera system for high-temperature measurements[J]. International Journal of Thermophysics, 2015, 36(8): 1784–1802. doi: 10.1007/s10765-015-1915-2
|
[6] |
田正林. 基于图像处理的燃气火焰检测监测技术研究[D]. 上海: 上海交通大学, 2019.
TIAN Z L. Research on detection and monitoring technology of gas flame based on image processing[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
[7] |
任宏宇, 叶林, 范博龙, 等. 基于双波段比能量法的非接触测温系统的研究[J]. 仪表技术与传感器, 2021, 6: 62–66. DOI: 10.3969/j.issn.1002-1841.2021.06.013
REN H Y, YE L, FAN B L, et al. Non-contact temperature measurement system based on dual-waveband specific energy method[J]. Instrument Technology and Sensor, 2021, 6: 62–66. doi: 10.3969/j.issn.1002-1841.2021.06.013
|
[8] |
段鹏程, 程博, 管今哥, 等. 基于多CCD同步耦合的动态燃烧场三维辐射测温[J]. 红外与激光工程, 2022, 51(10): 20220352. DOI: 10.3788/IRLA20220352
DUAN P C, CHENG B, GUAN J G, et al. Three-dimensional radiation thermometry for dynamic combustion field based on multi-CCD synchronous coupling[J]. Infrared and Laser Engineering, 2022, 51(10): 20220352. doi: 10.3788/IRLA20220352
|
[9] |
KRENEK S, GILBERS D, ANHALT K, et al. A dynamic method to measure emissivity at high temperatures[J]. International Journal of Thermophysics, 2015, 36(8): 1713–1725. doi: 10.1007/s10765-015-1866-7
|
[10] |
CAI J, YANG Y J, LIAO L, et al. Material spectral emissivity measurement based on two reference blackbodies[J]. International Journal of Thermophysics, 2015, 36(12): 3288–3296. doi: 10.1007/s10765-015-1969-1
|
[11] |
FU T R, DUAN M H, TANG J Q, et al. Measurements of the directional spectral emissivity based on a radiation heating source with alternating spectral distributions[J]. International Journal of Heat and Mass Transfer, 2015, 90: 1207–1213. doi: 10.1016/j.ijheatmasstransfer.2015.07.064
|
[12] |
李仲平. 热透波机理与热透波材料[M]. 北京: 中国宇航出版社, 2013.
|
[13] |
罗跃, 王磊, 党雷宁, 等. 模拟Chelyabinsk小行星进入的烧蚀实验[J]. 力学学报, 2020, 52(5): 1362–1370. DOI: 10.6052/0459-1879-20-081
LUO Y, WANG L, DANG L N, et al. Arcjet ablation experiment to simulate the Chelyabinsk asteroid entry[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1362–1370. doi: 10.6052/0459-1879-20-081
|
[14] |
HIDALGO H, KADANOFF L P. Comparison between theory and flight ablation data[J]. AIAA Journal, 1963, 1(1): 41–45. doi: 10.2514/3.1466
|
重要公告
www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。
《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。
相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。
请广大读者、作者相互转告,广为宣传!
感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!
《实验流体力学》编辑部
2021年8月13日