LIANG X Y, DING J F, ZHANG Y, et al. Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240045.
Citation: LIANG X Y, DING J F, ZHANG Y, et al. Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240045.

Three-dimensional particle reconstruction method for trichromatic mask PIV based on convolutional neural networks

More Information
  • Received Date: July 31, 2024
  • Revised Date: August 25, 2024
  • Accepted Date: August 28, 2024
  • Available Online: September 19, 2024
  • Trichromatic mask particle image velocimetry employs optical elements to alter imaging paths, integrating color and perspective information for single-camera three-dimensional flow velocity measurements. Due to the small imaging viewing angle between three perspectives, conventional algebraic reconstruction techniques yield elongated particle distributions and low directional resolution along the imaging depth direction. To mitigate elongation effects and enhance three-dimensional particle reconstruction quality, convolutional neural networks (CNNs) are applied. Utilizing the AIPR (Artificial Intelligence Particle Reconstruction) architecture, an algorithm tailored for small viewing angle in trichromatic mask PIV is developed. Evaluation involves synthetic image data and artificial flow fields varying in different viewing angles and particle concentration. Results demonstrate that compared to traditional algebraic methods, the proposed method improves reconstruction quality by 30% at the particle concentration of 0.05 ppp. Additionally, it achieves a reconstruction speed of up to 2.8 times faster than traditional methods, enabling the rapid three-dimensional reconstruction of the particle field and enhancing axial reconstruction quality.

  • [1]
    ELSINGA G E, SCARANO F, WIENEKE B, et al. Tomographic particle image velocimetry[J]. Experiments in Fluids, 2006, 41(6): 933–947. doi: 10.1007/s00348-006-0212-z
    [2]
    GAO Q, WANG H P, WANG J J. A single camera volumetric particle image velocimetry and its application[J]. Science China Technological Sciences, 2012, 55(9): 2501–2510. doi: 10.1007/s11431-012-4921-7
    [3]
    FAHRINGER T W, LYNCH K P, THUROW B S. Volumetric particle image velocimetry with a single plenoptic camera[J]. Measurement Science and Technology, 2015, 26(11): 115201. doi: 10.1088/0957-0233/26/11/115201
    [4]
    丁俊飞, 许晟明, 施圣贤. 光场单相机三维流场测试技术[J]. 实验流体力学, 2016, 30(6): 50–58. DOI: 10.11729/syltlx20160141

    DING J F, XU S M, SHI S X. Light field volumetric particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 50–58. doi: 10.11729/syltlx20160141
    [5]
    XIONG J H, IDOUGHI R, AGUIRRE-PABLO A A, et al. Rainbow particle imaging velocimetry for dense 3D fluid velocity imaging[J]. ACM Transactions on Graphics, 2017, 36(4): 1–14. doi: 10.1145/3072959.3073662
    [6]
    SHAN L, XIONG J Z, SHI F Y, et al. Three-dimensional color particle image velocimetry based on a cross-correlation and optical flow method[J]. Chinese Physics B, 2023, 32(5): 054702. doi: 10.1088/1674-1056/acb1ff
    [7]
    丁俊飞, 梁晓艺. 基于三色掩膜的单彩色相机三维流场测试技术[C]//第十二届全国流体力学学术会议论文集. 2022.
    [8]
    SCARANO F. Tomographic PIV: principles and practice[J]. Measurement Science and Technology, 2013, 24(1): 012001. doi: 10.1088/0957-0233/24/1/012001
    [9]
    李晓辉, 王宏伟, 黄湛, 等. 层析粒子图像测速技术研究进展[J]. 实验流体力学, 2021, 35(1): 86–96. DOI: 10.11729/syltlx20190160

    LI X H, WANG H W, HUANG Z, et al. Research advances of tomographic particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 86–96. doi: 10.11729/syltlx20190160
    [10]
    ATKINSON C, SORIA J. An efficient simultaneous reconstruction technique for tomographic particle image velocimetry[J]. Experiments in Fluids, 2009, 47(4): 553–568. doi: 10.1007/s00348-009-0728-0
    [11]
    WU Y F, WU J C, JIN S Z, et al. Dense-U-net: dense encoder–decoder network for holographic imaging of 3D particle fields[J]. Optics Communications, 2021, 493: 126970. doi: 10.1016/j.optcom.2021.126970
    [12]
    WANG S, YOU F C, WANG X W. Research on 3D particle field reconstruction method based on deep learning[J]. Journal of Physics: Conference Series, 2023, 2562(1): 012049. doi: 10.1088/1742-6596/2562/1/012049
    [13]
    QU X J, SONG Y, JIN Y, et al. 3D particle field reconstruction method based on convolutional neural network for SAPIV[J]. Optics Express, 2019, 27(8): 11413–11434. doi: 10.1364/OE.27.011413
    [14]
    QU X J, ZHANG P, QU R, et al. 3D tracer particle field reconstruction based on 3D CNN in SAPIV[C]//Proc of the Sixth Conference on Frontiers in Optical Imaging and Technology: Imaging Detection and Target Recognition. 2024. doi: 10.1117/12.3018841
    [15]
    沈诗宇, 李健, 顾梦涛, 等. 基于卷积神经网络深度学习模型的光场显微三维粒子空间分布重建[J]. 光学学报, 2023, 43(21): 2115002. DOI: 10.3788/AOS230958

    SHEN S Y, LI J, GU M T, et al. Deep learning-based three-dimensional spatial distribution reconstruction for light field micro-particle image velocimetry with convolutional neural network[J]. Acta Optica Sinica, 2023, 43(21): 2115002. doi: 10.3788/AOS230958
    [16]
    傅梦希, 朱效宇, 张良, 等. 基于深度残差神经网络的光场粒子图像测速粒子场重建方法[J]. 光学学报, 2024, 44(16): 1612001. DOI: 10.3788/AOS240721

    FU M X, ZHU X Y, ZHANG L, et al. Method of Particle Field Reconstruction in Light Field Particle Image Velocimetry Based on Deep Residual Neural Networks[J]. Acta Optica Sinica, 2024, 44(16): 1612001. doi: 10.3788/AOS240721
    [17]
    GAO Q, PAN S W, WANG H P, et al. Particle reconstruction of volumetric particle image velocimetry with the strategy of machine learning[J]. Advances in Aerodynamics, 2021, 3: 28. doi: 10.1186/s42774-021-00087-6
    [18]
    HIMPEL M, MELZER A. Fast 3D particle reconstruction using a convolutional neural network: application to dusty plasmas[J]. Machine Learning: Science and Technology, 2021, 2(4): 045019. doi: 10.1088/2632-2153/ac1fc8
    [19]
    DICE L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3): 297–302. doi: 10.2307/1932409
    [20]
    REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proc of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019. doi: 10.1109/CVPR.2019.00075

Catalog

    Article Metrics

    Article views (78) PDF downloads (14) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日