Citation: | LEI J L, GOU Y, LIU Y, et al. Study of splash characteristics and spreading mechanism of liquid droplets impacting walls at low temperature[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220147. |
[1] |
CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353–385. doi: 10.1016/j.ast.2017.12.028
|
[2] |
苑吉河, 蒋兴良, 易辉, 等. 输电线路导线覆冰的国内外研究现状[J]. 高电压技术, 2004, 30(1): 6–9. DOI: 10.3969/j.issn.1003-6520.2004.01.003
YUAN J H, JIANG X L, YI H, et al. The present study on conductor icing of transmission lines[J]. High Voltage Engineering, 2004, 30(1): 6–9. doi: 10.3969/j.issn.1003-6520.2004.01.003
|
[3] |
YIN M, XU L J, DAI Y, et al. Flow characteristics of oil-guiding splash lubrication: simulation and experiment studies[J]. International Journal of Simulation Modelling, 2021, 20(2): 363–374. doi: 10.2507/ijsimm20-2-co6
|
[4] |
ARUMUGAM R, XU H M, LIU D, et al. Key factors affecting the cold start of diesel engines[J]. International Journal of Green Energy, 2015: 1–56. doi: 10.1080/15435075.2014.938748
|
[5] |
SHI Z C, LEE C F, WU H, et al. Effect of injection pressure on the impinging spray and ignition characteristics of the heavy-duty diesel engine under low-temperature conditions[J]. Applied Energy, 2020, 262: 114552. doi: 10.1016/j.apenergy.2020.114552
|
[6] |
LIU H Q, HENEIN N A, BRYZIK W. Simulation of diesel engines cold-start[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2003. doi: 10.4271/2003-01-0080
|
[7] |
MA T Y, ZHANG F, LIU H F, et al. Modeling of droplet/wall interaction based on SPH method[J]. International Journal of Heat and Mass Transfer, 2017, 105: 296–304. doi: 10.1016/j.ijheatmasstransfer.2016.09.103
|
[8] |
CHEN B L, FENG L, WANG Y, et al. Spray and flame characteristics of wall-impinging diesel fuel spray at different wall temperatures and ambient pressures in a constant volume combustion vessel[J]. Fuel, 2019, 235: 416–425. doi: 10.1016/j.fuel.2018.07.154
|
[9] |
KEI F. Effect of impact velocity on time-dependent force and droplet pressure in high-speed liquid droplet impingement[J]. Annals of Nuclear Energy, 2022, 166: 108814. doi: 10.1016/j.anucene.2021.108814
|
[10] |
戴宇晴, 叶学民, 李春曦. 电场作用下表面张力对液滴运动特征的影响[J]. 电力科学与工程, 2016, 32(11): 66–73. DOI: 10.3969/j.issn.1672-0792.2016.11.012
DAI Y Q, YE X M, LI C X. Effect of surface tension on droplet dynamics in the presence of electric field[J]. Electric Power Science and Engineering, 2016, 32(11): 66–73. doi: 10.3969/j.issn.1672-0792.2016.11.012
|
[11] |
DE GOEDE T, DE BRUIN K, SHAHIDZADEH N, et al. Droplet splashing on rough surfaces[J]. Physical Review Fluids, 2021, 6(4): 043604. doi: 10.1103/physrevfluids.6.043604
|
[12] |
CHOWDHURY I U, MAHAPATRA P S, SEN A K. Shape evolution of drops on surfaces of different wettability gradients[J]. Chemical Engineering Science, 2021, 229: 116136. doi: 10.1016/j.ces.2020.116136
|
[13] |
DAI Q W, HUANG W, WANG X L. Contact angle hysteresis effect on the thermocapillary migration of liquid droplets[J]. Journal of Colloid and Interface Science, 2018, 515: 32–38. doi: 10.1016/j.jcis.2018.01.019
|
[14] |
HAO J G, LU J, LEE L N, et al. Droplet splashing on an inclined surface[J]. Physical Review Letters, 2019, 122(5): 054501. doi: 10.1103/physrevlett.122.054501
|
[15] |
STANTON D W, RUTLAND C J. Modeling fuel film formation and wall interaction in diesel engines[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 1996: 808-824. doi: 10.4271/960628
|
[16] |
O'ROURKE P J, AMSDEN A A. A spray/wall interaction submodel for the KIVA-3 wall film model[C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2000: 281-298. doi: 10.4271/2000-01-0271
|
[17] |
HAN Z, XU Z, TRIGUI N. Spray/wall interaction models for multidimensional engine simulation[J]. International Journal of Engine Research, 2000, 1(1): 127–146. doi: 10.1243/1468087001545308
|
[18] |
KUHNKE D. Spray / Wall-interaction modelling by dimensionless data analysis [M]. Germany: Shaker Verlag GmbH, 2004.
|
[19] |
ZHANG Z S, LIU X Y. Control of ice nucleation: freezing and antifreeze strategies[J]. Chemical Society Reviews, 2018, 47(18): 7116–7139. doi: 10.1039/c8cs00626a
|
[20] |
JU J J, YANG Z G, YI X, et al. Experimental investigation of the impact and freezing processes of a hot water droplet on an ice surface[J]. Physics of Fluids, 2019, 31(5): 057107. doi: 10.1063/1.5094691
|
[21] |
SCHREMB M, ROISMAN I V, TROPEA C. Normal impact of supercooled water drops onto a smooth ice surface: experiments and modelling[J]. Journal of Fluid Mechanics, 2018, 835: 1087–1107. doi: 10.1017/jfm.2017.797
|
[22] |
尚宇恒, 白博峰, 侯予, 等. 液滴撞击过冷壁面的结冰特性实验研究[J]. 西安交通大学学报, 2021, 55(10): 144–149. DOI: 10.7652/xjtuxb202110016
SHANG Y H, BAI B F, HOU Y, et al. Experimental research for freezing characteristics of droplets impacting on supercooled surface[J]. Journal of Xi’an Jiaotong University, 2021, 55(10): 144–149. doi: 10.7652/xjtuxb202110016
|
[23] |
YAWS C L, RICHMOND P C. Surface tension—organic compounds[M]//Thermophysical Properties of Chemicals and Hydrocarbons. Amsterdam: Elsevier, 2009: 686-781. doi: 10.1016/b978-081551596-8.50026-2
|
[24] |
KATRITZKY A R, CHEN K, WANG Y L, et al. Prediction of liquid viscosity for organic compounds by a quantitative structure-property relationship[J]. Journal of Physical Organic Chemistry, 2000, 13(1): 80–86. doi: 10.1002/(SICI)1099-1395(200001)13:1<80::AID-POC179>3.0.CO;2-8
|
[25] |
RIBOUX G, GORDILLO J M. Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing[J]. Physical Review Letters, 2014, 113(2): 024507. doi: 10.1103/PhysRevLett.113.024507
|
[26] |
IBRAHIM E A. Spatial instability of a viscous liquid sheet[J]. Journal of Propulsion and Power, 1995, 11(1): 146–152. doi: 10.2514/3.23852
|
[27] |
PALACIOS J, HERNÁNDEZ J, GÓMEZ P, et al. Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces[J]. Experimental Thermal and Fluid Science, 2013, 44: 571–582. doi: 10.1016/j.expthermflusci.2012.08.020
|
[28] |
REIN M, DELPLANQUE J P. The role of air entrainment on the outcome of drop impact on a solid surface[J]. Acta Mechanica, 2008, 201(1): 105. doi: 10.1007/s00707-008-0076-9
|
[29] |
XU L, ZHANG W W, NAGEL S R. Drop splashing on a dry smooth surface[J]. Physical Review Letters, 2005, 94(18): 184505. doi: 10.1103/PhysRevLett.94.184505
|
[30] |
崔宇航, 卫海桥, 王祥庭, 等. 高海拔模拟环境下柴油机燃烧粗暴可视化试验研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(4): 383–390. DOI: 10.11784/tdxbz202103051
CUI Y H, WEI H Q, WANG X T, et al. Optical experiments on diesel knock under simulated high-altitude conditions[J]. Journal of Tianjin University (Science and Technology), 2022, 55(4): 383–390. doi: 10.11784/tdxbz202103051
|
[31] |
BINESH A R, MOUSAVI S M, KAMALI R. Effect of temperature-dependency of Newtonian and non-Newtonian fluid properties on the dynamics of droplet impinging on hot surfaces[J]. International Journal of Modern Physics C, 2015, 26(9): 1550106. doi: 10.1142/s0129183115501065
|
[32] |
KOBAYASHI K, KONNO K, YAGUCHI H, et al. Early stage of nanodroplet impact on solid wall[J]. Physics of Fluids, 2016, 28(3): 032002. doi: 10.1063/1.4942874
|
[33] |
TABAKOVA S, FEUILLEBOIS F, MONGRUEL A, et al. First stages of drop impact on a dry surface: asymptotic model[J]. Zeitschrift Für Angewandte Mathematik Und Physik, 2012, 63(2): 313–330. doi: 10.1007/s00033-011-0169-5
|
[34] |
LEI J L, LI J W, LIU Y. Ethanol drop impingement on ultracold surfaces under low-temperature cold-start conditions of engines[J]. Fuel, 2022, 311: 122573. doi: 10.1016/j.fuel.2021.122573
|
[35] |
春江, 王瑾萱, 徐晨, 等. 液滴撞击超亲水表面的最大铺展直径预测模型[J]. 物理学报, 2021, 70(10): 106801. DOI: 10.7498/aps.70.20201918
CHUN J, WANG J X, XU C, et al. Theoretical model of maximum spreading diameter on superhydrophilic surfaces[J]. Acta Physica Sinica, 2021, 70(10): 106801. doi: 10.7498/aps.70.20201918
|