Citation: | GAO M C, MIN F, XIE Z D, et al. Research on static calibration of wind tunnel balances based on improved BP neural network[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230149. |
[1] |
贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001: 67-68.
HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001: 67-68.
|
[2] |
战培国. 国外风洞天平技术研究进展[J]. 飞航导弹, 2018(10): 63–68. DOI: 10.16338/j.issn.1009-1319.20180123
ZHAN P G. Research progress of wind tunnel balance technology abroad[J]. Aerodynamic Missile Journal, 2018(10): 63–68. doi: 10.16338/j.issn.1009-1319.20180123
|
[3] |
战培国. 国外风洞天平校准技术研究进展[J]. 航空科学技术, 2012, 23(2): 18–20. DOI: 10.3969/j.issn.1007-5453.2012.02.005
ZHAN P G. Development of wind tunnel balance calibration techniques[J]. Aeronautical Science & Technology, 2012, 23(2): 18–20. doi: 10.3969/j.issn.1007-5453.2012.02.005
|
[4] |
武家騊. 应变天平多元校中几种数据处理方法的比较[J]. 气动实验与测量控制, 1994, 8(3): 55–58.
WU J T. A comparison of methods of data processing for strain balance multi-component calibration[J]. Aerodynamic Experiment and Measurement & Control, 1994, 8(3): 55–58.
|
[5] |
李正鹏, 潘承毅, 邬阳阳. 人工神经网络在预测中的应用现状与展望[J]. 科技创新与生产力, 2023, 44(10): 27–30. DOI: 10.3969/j.issn.1674-9146.2023.10.027
LI Z P, PAN C Y, WU Y Y. Application status and prospect of artificial neural network in prediction[J]. Sci-Tech Innovation and Productivity, 2023, 44(10): 27–30. doi: 10.3969/j.issn.1674-9146.2023.10.027
|
[6] |
赵传荣, 孔德仁, 王胜强, 等. 一种冲击波压力传感器的准静态校准神经网络模型[J]. 振动与冲击, 2017, 36(13): 92–95, 139. DOI: 10.13465/j.cnki.jvs.2017.13.014
ZHAO C R, KONG D R, WANG S Q, et al. A neural network model of quasi-static calibration for shock wave pressure sensors[J]. Journal of Vibration and Shock, 2017, 36(13): 92–95, 139. doi: 10.13465/j.cnki.jvs.2017.13.014
|
[7] |
于振, 于万成. 一种基于BP神经网络的扭矩传感器静态校准系统[J]. 传感技术学报, 2020, 33(2): 238–244. DOI: 10.3969/j.issn.1004-1699.2020.02.013
YU Z, YU W C. A static calibration system of torque sensor based on BP neural network[J]. Chinese Journal of Sensors and Actuators, 2020, 33(2): 238–244. doi: 10.3969/j.issn.1004-1699.2020.02.013
|
[8] |
张海庆. 基于LSTM循环神经网络的矿用甲烷传感器自校准研究[J]. 煤矿机械, 2022, 43(6): 168–171. DOI: 10.13436/j.mkjx.202206055
ZHANG H Q. Research on self-calibration of mine methane sensor based on LSTM recurrent neural network[J]. Coal Mine Machinery, 2022, 43(6): 168–171. doi: 10.13436/j.mkjx.202206055
|
[9] |
车兵辉, 尹欣繁, 彭先敏, 等. 基于BP神经网络的天平校准数据处理方法研究[J]. 计算机测量与控制, 2020, 28(10): 165–169.
CHE B H, YIN X F, PENG X M, et al. Research on data processing method of balance calibration based on BP neural network[J]. Computer Measurement & Control, 2020, 28(10): 165–169.
|
[10] |
汪运鹏, 聂少军, 王粤, 等. 卷积神经网络在风洞天平静态校准中的应用[J]. 空气动力学学报, 2023, 41(3): 25–32. DOI: 10.7638/kqdlxxb-2022.0096
WANG Y P, NIE S J, WANG Y, et al. Application of convolutional neural network in static calibration of wind tunnel balance[J]. Acta Aerodynamica Sinica, 2023, 41(3): 25–32. doi: 10.7638/kqdlxxb-2022.0096
|
[11] |
李炳臻, 刘克, 顾佼佼, 等. 卷积神经网络研究综述[J]. 计算机时代, 2021(4): 8–12, 17. DOI: 10.16644/j.cnki.cn33-1094/tp.2021.04.003
LI B Z, LIU K, GU J J, et al. Review of the researches on convolutional neural networks[J]. Computer Era, 2021(4): 8–12, 17. doi: 10.16644/j.cnki.cn33-1094/tp.2021.04.003
|
[12] |
余本国. BP神经网络局限性及其改进的研究[J]. 山西农业大学学报(自然科学版), 2009, 29(1): 89–93. DOI: 10.3969/j.issn.1671-8151.2009.01.023
YU B G. Discussion on the limitation and improvement of BP neural network[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2009, 29(1): 89–93. doi: 10.3969/j.issn.1671-8151.2009.01.023
|
[13] |
杨洋, 陈家俊. 基于群智能算法优化BP神经网络的应用研究综述[J]. 电脑知识与技术, 2020, 16(35): 7–10, 14.
YANG Y, CHEN J J. Review on application of intelligent algorithm to optimize BP neural network[J]. Computer Knowledge and Technology, 2020, 16(35): 7–10, 14.
|
[14] |
高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022, 43(3): 21–30. DOI: 10.13705/j.issn.1671-6833.2022.03.007
GAO Y L, YANG Q W, WANG X F, et al. Summary of new group intelligent optimization algorithms[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 21–30. doi: 10.13705/j.issn.1671-6833.2022.03.007
|
[15] |
ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715–734. doi: 10.1007/s00500-018-3102-4
|