YANG K, WANG H Y, ZHU X X, et al. Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230140.
Citation: YANG K, WANG H Y, ZHU X X, et al. Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230140.

Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel

More Information
  • Received Date: October 26, 2023
  • Revised Date: November 10, 2023
  • Accepted Date: November 27, 2023
  • Available Online: February 25, 2024
  • Thin-skin calorimeters, coaxial thermocouples and infrared thermographics have the problems of being sensitive to the noise and high uncertainty in the corresponding measured heat flux densities, though frequently used in hypervelocity low-density wind-tunnel tests, The problems result from the complicated measuring principles and their low sensitivities. Hence, taking the properties of high sensitivity and ease of use into account, atomic-layer thermopile (ALTP) heat-flux sensors and small-sized Schmidt-Boelter gauges, two kinds of temperature-difference-based heat-flux sensors, are used to measure the low heat flux in a long duration, and their good performance is confirmed by the experiment conducted in a hypersonic low-density wind tunnel. Meanwhile, considering the fact that the size in diameter is relatively too large and the sensitivity is dependent on the effective length of the sensitive element, the sensitive elements of the ALTP sensor are connected in series by electric films, and the sensitivity of the revised ALTP sensor is multiplied without enlarging the size in diameter, which helps get small-sized ALTP heat-flux sensors in the near future.
  • [1]
    祝智伟. 风洞稀薄气动热试验测试技术研究[D]. 重庆: 重庆大学, 2019.

    ZHU Z W. Study on measuring technology of rarefied aero-dynamic heating in wind tunnel[D]. Chongqing: Chongqing University, 2019.
    [2]
    刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.
    [3]
    杨彦广, 李明, 李中华, 等. 高超声速飞行器跨流域气动力/热预测技术研究[J]. 空气动力学学报, 2016, 34(1): 5–13. DOI: 10.7638/kqdlxxb-2015.0149

    YANG Y G, LI M, LI Z H, et al. Aerodynamic force/heating measurement on hypersonic vehicle across different flow regions[J]. Acta Aerodynamica Sinica, 2016, 34(1): 5–13. doi: 10.7638/kqdlxxb-2015.0149
    [4]
    华威. 高超音速稀薄气流中平头圆柱尖锥热交换实验研究[J]. 空气动力学学报, 1984, 2(2): 61–65.

    HUA W. Experiment investigation of heat transfer to bluff cylinders and cones in hypersonic rarefied gas flow[J]. Acta Aerodynamica Sinica, 1984, 2(2): 61–65.
    [5]
    ALLEGRE J, BISCH D, LENGRAND J C. Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 724–728. doi: 10.2514/2.3302
    [6]
    欧朝, 龙垚松, 杨庆涛, 等. 边界层转捩飞行测量方法及实现[J]. 兵工学报, 2022, 43(10): 2657–2667. DOI: 10.12382/bgxb.2021.0523

    OU C, LONG Y S, YANG Q T, et al. Boundary layer transition flight measurement and implementation[J]. Acta Armamentarii, 2022, 43(10): 2657–2667. doi: 10.12382/bgxb.2021.0523
    [7]
    王宏宇, 王辉, 石义雷, 等. 一种高超声速稀薄流激波干扰气动热测量技术[J]. 宇航学报, 2020, 41(12): 1525–1532. DOI: 10.3873/j.issn.1000-1328.2020.12.006

    WANG H Y, WANG H, SHI Y L, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low-density flow[J]. Journal of Astronautics, 2020, 41(12): 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006
    [8]
    CHANETZ B, POT T, BENAY R, et al. New test cases in low density hypersonic flow[J]. AIP Conference Proceedings, 2003, 663(1): 449–456. doi: 10.1063/1.1581581
    [9]
    CHANETZ B, BENAY R, BOUSQUET J M, et al. Experimental and numerical study of the laminar separation in hypersonic flow[J]. Aerospace Science and Technology, 1998, 2(3): 205–218. doi: 10.1016/S1270-9638(98)80054-0
    [10]
    李明, 方明, 李震乾. 在稀薄气流中用红外热图测量中低量值热流[J]. 红外与激光工程, 2021, 50(4): 66–72.

    LI M, FANG M, LI Z Q. Measurement of mid-low order of magnitude of heat transfer rate using infrared thermography in rarefied flow[J]. Infrared and Laser Engineering, 2021, 50(4): 66–72.
    [11]
    LE SANT Y, MARCHAND M, MILLAN P, et al. An overview of infrared thermography techniques used in large wind tunnels[J]. Aerospace Science and Technology, 2002, 6(5): 355–366. doi: 10.1016/S1270-9638(02)01172-0
    [12]
    许亚敏, 饶宇. 液晶热像测量精度分析及其在湍流传热研究中的应用[J]. 上海交通大学学报, 2013, 47(8): 1185–1190,1197. DOI: 10.16183/j.cnki.jsjtu.2013.08.004

    XU Y M, RAO Y. Measurement accuracy and application of liquid crystal thermography technique in turbulent flow heat transfer[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1185–1190,1197. doi: 10.16183/j.cnki.jsjtu.2013.08.004
    [13]
    朱新新, 王辉, 杨凯, 等. 塞块量热计的热流计算与修正方法研究[J]. 实验流体力学, 2020, 34(5): 97–102,108. DOI: 10.11729/syltlx20190134

    ZHU X X, WANG H, YANG K, et al. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97–102,108. doi: 10.11729/syltlx20190134
    [14]
    MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479–488. doi: 10.6028/jres.102.032
    [15]
    张宏安, 黄见洪, 秦峰, 等. 基于脉冲加热法的薄膜热流传感器热物性参数测量技术研究[J]. 实验流体力学, 2018, 32(6): 74–78,93. DOI: 10.11729/syltlx20170120

    ZHANG H A, HUANG J H, QIN F, et al. Thermal property measuring techniques of thin-film heat flux sensors based on pulse-heating method[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120
    [16]
    MANJHI S K, KUMAR R. Surface heat flux measurements for short time-period on combustion chamber with different types of coaxial thermocouples[J]. Experimental Heat Transfer, 2020, 33(3): 282–303. doi: 10.1080/08916152.2019.1630031
    [17]
    YANG K. A new calibration technique for thin-film gauges and coaxial thermocouples used to measure the transient heat flux[J]. IEEE Transactions on Instrumentation and Measurement, 2064, 71: 1000809. doi: 10.1109/TIM.2021.3132064
    [18]
    杨凯, 刘济春, 陈苏宇, 等. 薄膜热电阻热流传感器的对比标定结果及分析[J]. 实验流体力学, 2023, 37(6): 106–111. DOI: 10.11729/syltlx20210129

    YANG K, LIU J C, CHEN S Y, et al. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106–111. doi: 10.11729/syltlx20210129
    [19]
    钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. DOI: 10.7638/kqdlxxb-2018.0185

    QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185
    [20]
    杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86–91. DOI: 10.11729/syltlx20190148

    YANG K, ZHU T, WANG X, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148
    [21]
    段金鑫, 李强, 杨凯, 等. 原子层热电堆热流传感器在激波风洞试验中的应用[J]. 推进技术, 2022, 43(3): 27–34. DOI: 10.13675/j.cnki.tjjs.200934

    DUAN J X, LI Q, YANG K, et al. Atomic layer thermopile heat-flux sensor and its application in shock tunnel tests[J]. Journal of Propulsion Technology, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934
    [22]
    ROEDIGER T, KNAUSS H, GAISBAUER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1): 011018. doi: 10.1115/1.2751141
    [23]
    朱新新, 朱涛, 杨凯, 等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学, 2021, 35(4): 106–111. DOI: 10.11729/syltlx20200065

    ZHU X X, ZHU T, YANG K, et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065
    [24]
    KIDD C T, ADAMS J C. Fast-response heat-flux sensor for measurement commonality in hypersonic wind tunnels[J]. Journal of Spacecraft and Rockets, 2001, 38(5): 719–729. doi: 10.2514/2.3738
    [25]
    杨凯, 杨庆涛, 朱新新, 等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术, 2018, 38(3): 67–72. DOI: 10.12060/j.issn.1000-7202.2018.03.11

    YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3): 67–72. doi: 10.12060/j.issn.1000-7202.2018.03.11
    [26]
    YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150: 107039. doi: 10.1016/j.measurement.2019.107039
    [27]
    庄新港, 刘红博, 张鹏举, 等. 低温辐射计热结构设计与分析[J]. 物理学报, 2019, 68(6): 060601. DOI: 10.7498/aps.68.20181880

    ZHUANG X G, LIU H B, ZHANG P J, et al. Design and analysis of thermo-structure for cryogenic radiometer[J]. Acta Physica Sinica, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880
    [28]
    陈苏宇, 刘济春, 杨凯, 等. 薄膜热流计与原子层热电堆传感器的激波风洞试验对比[J/OL]. 实验流体力学.

    CHEN S Y, LIU J C, YANG K, et al. Comparative analysis between thin-film gauges and ALTP sensors in shock tunnel tests[J/OL]. Journal of Experiments in Fluid Mechanics.
    [29]
    ZHANG P X, STICHER U, LEIBOLD B, et al. Thickness dependence of the thermoelectric voltages in YBaCuO7– δ thin films on tilted substrate of SrTiO3[J]. Physica C: Superconductivity and Its Applications, 1997, 282-287(Part 4): 2551-2552. DOI: 10.1016/s0921-4534(97)01371-3.
    [30]
    杨凯, 朱新新, 朱涛, 等. 原子层热电堆热流传感器动态校准方法及其结果[C]//第十二届全国流体力学学术会议论文集. 2021.
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (131) PDF downloads (30) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close