Citation: | YANG K, WANG H Y, ZHU X X, et al. Temperature-difference-based heat-flux sensors and their application in hypervelocity low-density wind tunnel[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230140. |
[1] |
祝智伟. 风洞稀薄气动热试验测试技术研究[D]. 重庆: 重庆大学, 2019.
ZHU Z W. Study on measuring technology of rarefied aero-dynamic heating in wind tunnel[D]. Chongqing: Chongqing University, 2019.
|
[2] |
刘初平. 气动热与热防护试验热流测量[M]. 北京: 国防工业出版社, 2013.
|
[3] |
杨彦广, 李明, 李中华, 等. 高超声速飞行器跨流域气动力/热预测技术研究[J]. 空气动力学学报, 2016, 34(1): 5–13. DOI: 10.7638/kqdlxxb-2015.0149
YANG Y G, LI M, LI Z H, et al. Aerodynamic force/heating measurement on hypersonic vehicle across different flow regions[J]. Acta Aerodynamica Sinica, 2016, 34(1): 5–13. doi: 10.7638/kqdlxxb-2015.0149
|
[4] |
华威. 高超音速稀薄气流中平头圆柱尖锥热交换实验研究[J]. 空气动力学学报, 1984, 2(2): 61–65.
HUA W. Experiment investigation of heat transfer to bluff cylinders and cones in hypersonic rarefied gas flow[J]. Acta Aerodynamica Sinica, 1984, 2(2): 61–65.
|
[5] |
ALLEGRE J, BISCH D, LENGRAND J C. Experimental rarefied heat transfer at hypersonic conditions over 70-degree blunted cone[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 724–728. doi: 10.2514/2.3302
|
[6] |
欧朝, 龙垚松, 杨庆涛, 等. 边界层转捩飞行测量方法及实现[J]. 兵工学报, 2022, 43(10): 2657–2667. DOI: 10.12382/bgxb.2021.0523
OU C, LONG Y S, YANG Q T, et al. Boundary layer transition flight measurement and implementation[J]. Acta Armamentarii, 2022, 43(10): 2657–2667. doi: 10.12382/bgxb.2021.0523
|
[7] |
王宏宇, 王辉, 石义雷, 等. 一种高超声速稀薄流激波干扰气动热测量技术[J]. 宇航学报, 2020, 41(12): 1525–1532. DOI: 10.3873/j.issn.1000-1328.2020.12.006
WANG H Y, WANG H, SHI Y L, et al. An aerothermodynamics measuring technique for shock interactions in hypersonic low-density flow[J]. Journal of Astronautics, 2020, 41(12): 1525–1532. doi: 10.3873/j.issn.1000-1328.2020.12.006
|
[8] |
CHANETZ B, POT T, BENAY R, et al. New test cases in low density hypersonic flow[J]. AIP Conference Proceedings, 2003, 663(1): 449–456. doi: 10.1063/1.1581581
|
[9] |
CHANETZ B, BENAY R, BOUSQUET J M, et al. Experimental and numerical study of the laminar separation in hypersonic flow[J]. Aerospace Science and Technology, 1998, 2(3): 205–218. doi: 10.1016/S1270-9638(98)80054-0
|
[10] |
李明, 方明, 李震乾. 在稀薄气流中用红外热图测量中低量值热流[J]. 红外与激光工程, 2021, 50(4): 66–72.
LI M, FANG M, LI Z Q. Measurement of mid-low order of magnitude of heat transfer rate using infrared thermography in rarefied flow[J]. Infrared and Laser Engineering, 2021, 50(4): 66–72.
|
[11] |
LE SANT Y, MARCHAND M, MILLAN P, et al. An overview of infrared thermography techniques used in large wind tunnels[J]. Aerospace Science and Technology, 2002, 6(5): 355–366. doi: 10.1016/S1270-9638(02)01172-0
|
[12] |
许亚敏, 饶宇. 液晶热像测量精度分析及其在湍流传热研究中的应用[J]. 上海交通大学学报, 2013, 47(8): 1185–1190,1197. DOI: 10.16183/j.cnki.jsjtu.2013.08.004
XU Y M, RAO Y. Measurement accuracy and application of liquid crystal thermography technique in turbulent flow heat transfer[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8): 1185–1190,1197. doi: 10.16183/j.cnki.jsjtu.2013.08.004
|
[13] |
朱新新, 王辉, 杨凯, 等. 塞块量热计的热流计算与修正方法研究[J]. 实验流体力学, 2020, 34(5): 97–102,108. DOI: 10.11729/syltlx20190134
ZHU X X, WANG H, YANG K, et al. Research on heat flux calculation and correction methods of the slug calorimeter[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 97–102,108. doi: 10.11729/syltlx20190134
|
[14] |
MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479–488. doi: 10.6028/jres.102.032
|
[15] |
张宏安, 黄见洪, 秦峰, 等. 基于脉冲加热法的薄膜热流传感器热物性参数测量技术研究[J]. 实验流体力学, 2018, 32(6): 74–78,93. DOI: 10.11729/syltlx20170120
ZHANG H A, HUANG J H, QIN F, et al. Thermal property measuring techniques of thin-film heat flux sensors based on pulse-heating method[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 74–78,93. doi: 10.11729/syltlx20170120
|
[16] |
MANJHI S K, KUMAR R. Surface heat flux measurements for short time-period on combustion chamber with different types of coaxial thermocouples[J]. Experimental Heat Transfer, 2020, 33(3): 282–303. doi: 10.1080/08916152.2019.1630031
|
[17] |
YANG K. A new calibration technique for thin-film gauges and coaxial thermocouples used to measure the transient heat flux[J]. IEEE Transactions on Instrumentation and Measurement, 2064, 71: 1000809. doi: 10.1109/TIM.2021.3132064
|
[18] |
杨凯, 刘济春, 陈苏宇, 等. 薄膜热电阻热流传感器的对比标定结果及分析[J]. 实验流体力学, 2023, 37(6): 106–111. DOI: 10.11729/syltlx20210129
YANG K, LIU J C, CHEN S Y, et al. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106–111. doi: 10.11729/syltlx20210129
|
[19] |
钱炜祺, 周宇, 邵元培. 表面热流辨识结果的误差分析与估计[J]. 空气动力学学报, 2020, 38(4): 687–693. DOI: 10.7638/kqdlxxb-2018.0185
QIAN W Q, ZHOU Y, SHAO Y P. Error analysis of surface heat flux estimation[J]. Acta Aerodynamica Sinica, 2020, 38(4): 687–693. doi: 10.7638/kqdlxxb-2018.0185
|
[20] |
杨凯, 朱涛, 王雄, 等. 原子层热电堆热流传感器研制及其性能测试[J]. 实验流体力学, 2020, 34(6): 86–91. DOI: 10.11729/syltlx20190148
YANG K, ZHU T, WANG X, et al. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86–91. doi: 10.11729/syltlx20190148
|
[21] |
段金鑫, 李强, 杨凯, 等. 原子层热电堆热流传感器在激波风洞试验中的应用[J]. 推进技术, 2022, 43(3): 27–34. DOI: 10.13675/j.cnki.tjjs.200934
DUAN J X, LI Q, YANG K, et al. Atomic layer thermopile heat-flux sensor and its application in shock tunnel tests[J]. Journal of Propulsion Technology, 2022, 43(3): 27–34. doi: 10.13675/j.cnki.tjjs.200934
|
[22] |
ROEDIGER T, KNAUSS H, GAISBAUER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor—part I: sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1): 011018. doi: 10.1115/1.2751141
|
[23] |
朱新新, 朱涛, 杨凯, 等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学, 2021, 35(4): 106–111. DOI: 10.11729/syltlx20200065
ZHU X X, ZHU T, YANG K, et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 106–111. doi: 10.11729/syltlx20200065
|
[24] |
KIDD C T, ADAMS J C. Fast-response heat-flux sensor for measurement commonality in hypersonic wind tunnels[J]. Journal of Spacecraft and Rockets, 2001, 38(5): 719–729. doi: 10.2514/2.3738
|
[25] |
杨凯, 杨庆涛, 朱新新, 等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术, 2018, 38(3): 67–72. DOI: 10.12060/j.issn.1000-7202.2018.03.11
YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3): 67–72. doi: 10.12060/j.issn.1000-7202.2018.03.11
|
[26] |
YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150: 107039. doi: 10.1016/j.measurement.2019.107039
|
[27] |
庄新港, 刘红博, 张鹏举, 等. 低温辐射计热结构设计与分析[J]. 物理学报, 2019, 68(6): 060601. DOI: 10.7498/aps.68.20181880
ZHUANG X G, LIU H B, ZHANG P J, et al. Design and analysis of thermo-structure for cryogenic radiometer[J]. Acta Physica Sinica, 2019, 68(6): 060601. doi: 10.7498/aps.68.20181880
|
[28] |
陈苏宇, 刘济春, 杨凯, 等. 薄膜热流计与原子层热电堆传感器的激波风洞试验对比[J/OL]. 实验流体力学.
CHEN S Y, LIU J C, YANG K, et al. Comparative analysis between thin-film gauges and ALTP sensors in shock tunnel tests[J/OL]. Journal of Experiments in Fluid Mechanics.
|
[29] |
ZHANG P X, STICHER U, LEIBOLD B, et al. Thickness dependence of the thermoelectric voltages in YBaCuO7– δ thin films on tilted substrate of SrTiO3[J]. Physica C: Superconductivity and Its Applications, 1997, 282-287(Part 4): 2551-2552. DOI: 10.1016/s0921-4534(97)01371-3.
|
[30] |
杨凯, 朱新新, 朱涛, 等. 原子层热电堆热流传感器动态校准方法及其结果[C]//第十二届全国流体力学学术会议论文集. 2021.
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |