Citation: | WANG Y Y, WANG C Y, MANG S S, et al. Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230080. |
[1] |
AZUMA A. The Biokinetics of Flying and Swimming[M]. Tokyo: Springer Japan, 1992.
|
[2] |
JONES S K, LAURENZA R, HEDRICK T L, et al. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects[J]. Journal of Theoretical Biology, 2015, 384: 105–120. doi: 10.1016/j.jtbi.2015.07.035
|
[3] |
ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626–630. doi: 10.1038/384626a0
|
[4] |
DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954–1960. doi: 10.1126/science.284.5422.1954
|
[5] |
SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1): 55–70. doi: 10.1242/jeb.205.1.55
|
[6] |
兰世隆, 孙茂. 模型昆虫翼作非定常运动时的气动力特性[J]. 力学学报, 2001, 33(2): 173–182. DOI: 10.3321/j.issn:0459-1879.2001.02.004
LAN S L, SUN M. Aerodynamic properties of a wing performing unsteady rotational motions[J]. Acta Mechanica Sinica, 2001, 33(2): 173–182. doi: 10.3321/j.issn:0459-1879.2001.02.004
|
[7] |
兰世隆, 孙茂. 蜻蜓前后翼拍动时的相互干扰[C]//“力学2000”学术大会论文集. 2000.
|
[8] |
孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 201501.
SUN M. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 205501.
|
[9] |
陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12): 2668–2681. DOI: 10.7527/S1000-6893.2013.0328
CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2668–2681. doi: 10.7527/S1000-6893.2013.0328
|
[10] |
李占科, 宋笔锋, 宋海龙. 微型飞行器的研究现状及其关键技术[J]. 飞行力学, 2003, 21(4): 1–4. DOI: 10.3969/j.issn.1002-0853.2003.04.001
LI Z K, SONG B F, SONG H L. Study on actualities of micro air vehicles and its key technologies[J]. Flight Dynamics, 2003, 21(4): 1–4. doi: 10.3969/j.issn.1002-0853.2003.04.001
|
[11] |
赵钟, 段旭鹏, 常兴华, 等. 鸟类扑翼运动的非定常运动初步数值模拟研究[C]//第七届全国流体力学学术会议论文摘要集. 2012: 1.
|
[12] |
ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1): 47–62. doi: 10.1016/j.cja.2012.12.002
|
[13] |
曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析[J]. 南京航空航天大学学报, 2003, 35(1): 6–12. DOI: 10.3969/j.issn.1005-2615.2003.01.002
ZENG R, ANG H S. Aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 6–12. doi: 10.3969/j.issn.1005-2615.2003.01.002
|
[14] |
RISTROPH L, CHILDRESS S. Stable hovering of a jellyfish-like flying machine[J]. Journal of the Royal Society Interface, 2014, 11(92): 20130992. doi: 10.1098/rsif.2013.0992
|
[15] |
FANG F, HO K L, RISTROPH L, et al. A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine[J]. Journal of Fluid Mechanics, 2017, 819: 621–655. doi: 10.1017/jfm.2017.150
|
[16] |
ZHANG X, HE G W, WANG S Z, et al. Locomotion of a bioinspired flyer powered by one pair of pitching foils[J]. Physical Review Fluids, 2018, 3: 013102. doi: 10.1103/physrevfluids.3.013102
|
[17] |
LIU Y Y, PAN C, ZHOU Y J, et al. Visualization on vortical structures in the wake of a pair of pitching wings with asymmetrical motion[J]. Journal of Visualization, 2020, 23(2): 185–190. doi: 10.1007/s12650-019-00616-y
|
[18] |
ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
|
[19] |
王洪平, 高琪, 魏润杰, 等. 基于层析PIV的湍流边界层展向涡研究[J]. 实验流体力学, 2016, 30(2): 59–66. DOI: 10.11729/syltlx20150086
WANG H P, GAO Q, WEI R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 59–66. doi: 10.11729/syltlx20150086
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |