Turn off MathJax
Article Contents
WANG Y Y, WANG C Y, MANG S S, et al. Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230080
Citation: WANG Y Y, WANG C Y, MANG S S, et al. Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230080

Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry

doi: 10.11729/syltlx20230080
  • Received Date: 2023-06-12
  • Accepted Date: 2023-11-16
  • Rev Recd Date: 2023-10-19
  • Available Online: 2024-03-04
  • As a new type of micro aircraft configuration, the jellyfish-like flying aircraft has the advantages of low noise and flexible maneuvering, which has attracted the attention of the academic community. In this paper, a pair of two-dimensional plates rotating around fixed axes is used as a simplified model of jellyfish-like flapping wings. The disturbed flow fields in static water are measured by the time-resolved particle image velocimetry. By controlling the frequency and angular amplitude of the flapping motion, the influence of the motion parameters on the vortex characteristics and evolution law is studied. The vortex generation, shedding, and interaction processes are analyzed by using the phase average method and the circulation tracking technique. The forming mechanism of thrust is explained from the perspective of vortex dynamics. The experimental results provide certain references for the design of the jellyfish-like flying machines.
  • loading
  • [1]
    AZUMA A. The Biokinetics of Flying and Swimming[M]. Tokyo: Springer Japan, 1992.
    [2]
    JONES S K, LAURENZA R, HEDRICK T L, et al. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects[J]. Journal of Theoretical Biology, 2015, 384: 105–120. doi: 10.1016/j.jtbi.2015.07.035
    [3]
    ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626–630. doi: 10.1038/384626a0
    [4]
    DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954–1960. doi: 10.1126/science.284.5422.1954
    [5]
    SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1): 55–70. doi: 10.1242/jeb.205.1.55
    [6]
    兰世隆, 孙茂. 模型昆虫翼作非定常运动时的气动力特性[J]. 力学学报, 2001, 33(2): 173–182. doi: 10.3321/j.issn:0459-1879.2001.02.004

    LAN S L, SUN M. Aerodynamic properties of a wing performing unsteady rotational motions[J]. Acta Mechanica Sinica, 2001, 33(2): 173–182. doi: 10.3321/j.issn:0459-1879.2001.02.004
    [7]
    兰世隆, 孙茂. 蜻蜓前后翼拍动时的相互干扰[C]//“力学2000”学术大会论文集. 2000.
    [8]
    孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 201501.

    SUN M. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 205501.
    [9]
    陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12): 2668–2681. doi: 10.7527/S1000-6893.2013.0328

    CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2668–2681. doi: 10.7527/S1000-6893.2013.0328
    [10]
    李占科, 宋笔锋, 宋海龙. 微型飞行器的研究现状及其关键技术[J]. 飞行力学, 2003, 21(4): 1–4. doi: 10.3969/j.issn.1002-0853.2003.04.001

    LI Z K, SONG B F, SONG H L. Study on actualities of micro air vehicles and its key technologies[J]. Flight Dynamics, 2003, 21(4): 1–4. doi: 10.3969/j.issn.1002-0853.2003.04.001
    [11]
    赵钟, 段旭鹏, 常兴华, 等. 鸟类扑翼运动的非定常运动初步数值模拟研究[C]//第七届全国流体力学学术会议论文摘要集. 2012: 1.
    [12]
    ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1): 47–62. doi: 10.1016/j.cja.2012.12.002
    [13]
    曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析[J]. 南京航空航天大学学报, 2003, 35(1): 6–12. doi: 10.3969/j.issn.1005-2615.2003.01.002

    ZENG R, ANG H S. Aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 6–12. doi: 10.3969/j.issn.1005-2615.2003.01.002
    [14]
    RISTROPH L, CHILDRESS S. Stable hovering of a jellyfish-like flying machine[J]. Journal of the Royal Society Interface, 2014, 11(92): 20130992. doi: 10.1098/rsif.2013.0992
    [15]
    FANG F, HO K L, RISTROPH L, et al. A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine[J]. Journal of Fluid Mechanics, 2017, 819: 621–655. doi: 10.1017/jfm.2017.150
    [16]
    ZHANG X, HE G W, WANG S Z, et al. Locomotion of a bioinspired flyer powered by one pair of pitching foils[J]. Physical Review Fluids, 2018, 3: 013102. doi: 10.1103/physrevfluids.3.013102
    [17]
    LIU Y Y, PAN C, ZHOU Y J, et al. Visualization on vortical structures in the wake of a pair of pitching wings with asymmetrical motion[J]. Journal of Visualization, 2020, 23(2): 185–190. doi: 10.1007/s12650-019-00616-y
    [18]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
    [19]
    王洪平, 高琪, 魏润杰, 等. 基于层析PIV的湍流边界层展向涡研究[J]. 实验流体力学, 2016, 30(2): 59–66. doi: 10.11729/syltlx20150086

    WANG H P, GAO Q, WEI R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 59–66. doi: 10.11729/syltlx20150086
  • 2023-080 王媛媛-流场动画.zip
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (44) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return