WANG Y Y, WANG C Y, MANG S S, et al. Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230080.
Citation: WANG Y Y, WANG C Y, MANG S S, et al. Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230080.

Research on the vortex dynamics of two-dimensional jellyfish-like flapping wings based on particle image velocimetry

More Information
  • Received Date: June 11, 2023
  • Revised Date: October 18, 2023
  • Accepted Date: November 15, 2023
  • Available Online: March 03, 2024
  • As a new type of micro aircraft configuration, the jellyfish-like flying aircraft has the advantages of low noise and flexible maneuvering, which has attracted the attention of the academic community. In this paper, a pair of two-dimensional plates rotating around fixed axes is used as a simplified model of jellyfish-like flapping wings. The disturbed flow fields in static water are measured by the time-resolved particle image velocimetry. By controlling the frequency and angular amplitude of the flapping motion, the influence of the motion parameters on the vortex characteristics and evolution law is studied. The vortex generation, shedding, and interaction processes are analyzed by using the phase average method and the circulation tracking technique. The forming mechanism of thrust is explained from the perspective of vortex dynamics. The experimental results provide certain references for the design of the jellyfish-like flying machines.
  • [1]
    AZUMA A. The Biokinetics of Flying and Swimming[M]. Tokyo: Springer Japan, 1992.
    [2]
    JONES S K, LAURENZA R, HEDRICK T L, et al. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects[J]. Journal of Theoretical Biology, 2015, 384: 105–120. doi: 10.1016/j.jtbi.2015.07.035
    [3]
    ELLINGTON C P, VAN DEN BERG C, WILLMOTT A P, et al. Leading-edge vortices in insect flight[J]. Nature, 1996, 384(6610): 626–630. doi: 10.1038/384626a0
    [4]
    DICKINSON M H, LEHMANN F O, SANE S P. Wing rotation and the aerodynamic basis of insect flight[J]. Science, 1999, 284(5422): 1954–1960. doi: 10.1126/science.284.5422.1954
    [5]
    SUN M, TANG J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion[J]. Journal of Experimental Biology, 2002, 205(1): 55–70. doi: 10.1242/jeb.205.1.55
    [6]
    兰世隆, 孙茂. 模型昆虫翼作非定常运动时的气动力特性[J]. 力学学报, 2001, 33(2): 173–182. DOI: 10.3321/j.issn:0459-1879.2001.02.004

    LAN S L, SUN M. Aerodynamic properties of a wing performing unsteady rotational motions[J]. Acta Mechanica Sinica, 2001, 33(2): 173–182. doi: 10.3321/j.issn:0459-1879.2001.02.004
    [7]
    兰世隆, 孙茂. 蜻蜓前后翼拍动时的相互干扰[C]//“力学2000”学术大会论文集. 2000.
    [8]
    孙茂. 昆虫飞行的空气动力学[J]. 力学进展, 2015, 45(1): 201501.

    SUN M. Aerodynamics of insect flight[J]. Advances in Mechanics, 2015, 45(1): 205501.
    [9]
    陈利丽, 宋笔锋, 宋文萍, 等. 一种基于结构动力学的柔性扑翼气动结构耦合方法研究[J]. 航空学报, 2013, 34(12): 2668–2681. DOI: 10.7527/S1000-6893.2013.0328

    CHEN L L, SONG B F, SONG W P, et al. Research on aerodynamic-structural coupling of flexible flapping wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(12): 2668–2681. doi: 10.7527/S1000-6893.2013.0328
    [10]
    李占科, 宋笔锋, 宋海龙. 微型飞行器的研究现状及其关键技术[J]. 飞行力学, 2003, 21(4): 1–4. DOI: 10.3969/j.issn.1002-0853.2003.04.001

    LI Z K, SONG B F, SONG H L. Study on actualities of micro air vehicles and its key technologies[J]. Flight Dynamics, 2003, 21(4): 1–4. doi: 10.3969/j.issn.1002-0853.2003.04.001
    [11]
    赵钟, 段旭鹏, 常兴华, 等. 鸟类扑翼运动的非定常运动初步数值模拟研究[C]//第七届全国流体力学学术会议论文摘要集. 2012: 1.
    [12]
    ZHANG L P, ZHAO Z, CHANG X H, et al. A 3D hybrid grid generation technique and a multigrid/parallel algorithm based on anisotropic agglomeration approach[J]. Chinese Journal of Aeronautics, 2013, 26(1): 47–62. doi: 10.1016/j.cja.2012.12.002
    [13]
    曾锐, 昂海松. 仿鸟复合振动的扑翼气动分析[J]. 南京航空航天大学学报, 2003, 35(1): 6–12. DOI: 10.3969/j.issn.1005-2615.2003.01.002

    ZENG R, ANG H S. Aerodynamic computation of flapping-wing simulating bird wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2003, 35(1): 6–12. doi: 10.3969/j.issn.1005-2615.2003.01.002
    [14]
    RISTROPH L, CHILDRESS S. Stable hovering of a jellyfish-like flying machine[J]. Journal of the Royal Society Interface, 2014, 11(92): 20130992. doi: 10.1098/rsif.2013.0992
    [15]
    FANG F, HO K L, RISTROPH L, et al. A computational model of the flight dynamics and aerodynamics of a jellyfish-like flying machine[J]. Journal of Fluid Mechanics, 2017, 819: 621–655. doi: 10.1017/jfm.2017.150
    [16]
    ZHANG X, HE G W, WANG S Z, et al. Locomotion of a bioinspired flyer powered by one pair of pitching foils[J]. Physical Review Fluids, 2018, 3: 013102. doi: 10.1103/physrevfluids.3.013102
    [17]
    LIU Y Y, PAN C, ZHOU Y J, et al. Visualization on vortical structures in the wake of a pair of pitching wings with asymmetrical motion[J]. Journal of Visualization, 2020, 23(2): 185–190. doi: 10.1007/s12650-019-00616-y
    [18]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
    [19]
    王洪平, 高琪, 魏润杰, 等. 基于层析PIV的湍流边界层展向涡研究[J]. 实验流体力学, 2016, 30(2): 59–66. DOI: 10.11729/syltlx20150086

    WANG H P, GAO Q, WEI R J, et al. Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 59–66. doi: 10.11729/syltlx20150086
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Other Related Supplements

  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (124) PDF downloads (25) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close