Citation: | ZHU X X, YANG Y J, WANG H, et al. Development and experimental analysis of circular foil pressure-heat flux gage[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230044. |
[1] |
CECERE A, SAVINO R, ALLOUIS C, et al. Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions[J]. International Journal of Heat and Mass Transfer, 2015, 91: 747–755. doi: 10.1016/j.ijheatmasstransfer.2015.08.029
|
[2] |
罗跃, 周玮, 杨鸿, 等. 电弧加热器湍流平板试验流场计算分析[J]. 实验流体力学, 2017, 31(2): 86–92. DOI: 10.11729/syltlx20160088
LUO Y, ZHOU W, YANG H, et al. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86–92. doi: 10.11729/syltlx20160088
|
[3] |
周凯, 欧东斌, 张仕忠, 等. 热流传感器传热特性电弧风洞实验及数值模拟[J]. 气体物理, 2022, 7(4): 83–90. DOI: 10.19527/j.cnki.2096-1642.0945
ZHOU K, OU D B, ZHANG S Z, et al. Experimental and numerical simulation of heat transfer characteristics for heat flux sensors in arc heated wind tunnels[J]. Physics of Gases, 2022, 7(4): 83–90. doi: 10.19527/j.cnki.2096-1642.0945
|
[4] |
ZHOU W X, WANG D, BAO W, et al. Experimental method study on heat flux measurement on sharp leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(11): 2055–2065. doi: 10.1177/0954410013513567
|
[5] |
杨鸿, 罗跃, 吴东, 等. 电弧加热器超声速湍流平板烧蚀流场变化研究[J]. 实验流体力学, 2018, 32(4): 72–77. DOI: 10.11729/syltlx20170181
YANG H, LUO Y, WU D, et al. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72–77. doi: 10.11729/syltlx20170181
|
[6] |
NAWAZ A, SANTOS J A. Assessing calorimeter evaluation methods in convective and radiative heat flux Environment[C]// Proc of the 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. 2010. doi: 10.2514/6.2010-4905
|
[7] |
NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Proc of the 43rd AIAA Thermophysics Conference. 2012. doi: 10.2514/6.2012-3186
|
[8] |
朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学, 2018, 32(6): 34–40. DOI: 10.11729/syltlx20180071
ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071
|
[9] |
陈德江, 王国林, 曲杨, 等. 气动热试验中稳态热流测量技术研究[J]. 实验流体力学, 2005, 19(1): 75–78. DOI: 10.3969/j.issn.1672-9897.2005.01.015
CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015
|
[10] |
朱新新, 李泽禹, 赵文峰, 等. 水卡量热计的流热耦合模拟研究及试验分析[J]. 实验流体力学, 2022, 36(6): 83–88. DOI: 10.11729/syltlx20210011
ZHU X X, LI Z Y, ZHAO W F, et al. Research on fluid-thermal coupling simulation of water-cooled calorimeter and experimental analysis[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 83–88. doi: 10.11729/syltlx20210011
|
[11] |
王辉, 杨凯, 杨庆涛, 等. 一种基于非稳态传热模型的新型热流传感器: CN108871599A[P]. 2018-11-23.
WANG H, YANG K, YANG Q T, et al. Novel heat flux sensor based on unsteady state heat transfer model: CN108871599A[P]. 2018-11-23.
|
[12] |
GARDON R. An instrument for the direct measurement of intense thermal radiation[J]. Review of Scientific Instruments, 1953, 24(5): 366–370. doi: 10.1063/1.1770712
|
[13] |
STATHOPOULOS P, HOFMANN F, ROTHENFLUH T, et al. Calibration of a Gardon sensor in a high-temperature high heat flux stagnation facility[J]. Experimental Heat Transfer, 2012, 25(3): 222–237. doi: 10.1080/08916152.2011.609631
|
[14] |
FU T R, ZONG A Z, ZHANG Y R, et al. A method to measure heat flux in convection using Gardon gauge[J]. Applied Thermal Engineering, 2016, 108: 1357–1361. doi: 10.1016/j.applthermaleng.2016.07.164
|
[15] |
PURPURA C, TRIFONI E, PETRELLA O, et al. Gardon gauge heat flux sensor verification by new working facility[J]. Measurement, 2019, 134: 245–252. doi: 10.1016/j.measurement.2018.10.076
|
[16] |
罗跃, 杨凯, 黄伟, 等. 用于高温高压剪切流场的Gardon计研制[J]. 科学技术与工程, 2017, 17(29): 139–144. DOI: 10.3969/j.issn.1671-1815.2017.29.020
LUO Y, YANG K, HUANG W, et al. Design and fabrication of Gardon gage used in shear flow filed of high temperature/pressure[J]. Science Technology and Engineering, 2017, 17(29): 139–144. doi: 10.3969/j.issn.1671-1815.2017.29.020
|
[17] |
朱新新, 王辉, 彭海波, 等. 一种高辐照度热流传感器标定装置: CN213422482U[P]. 2021-06-11.
ZHU X X, WANG H, PENG H B, et al. Calibration device for high-irradiance heat flow sensor: CN213422482U[P]. 2021-06-11.
|
[18] |
MURTHY A V, TSAI B K, SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2): 293–305. doi: 10.6028/jres.105.033
|
[19] |
朱新新, 王辉, 杨庆涛, 等. 弧光灯热流标定系统的光学设计[J]. 光学学报, 2016, 36(11): 1122001. DOI: 10.3788/AOS201636.1122001
ZHU X X, WANG H, YANG Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica, 2016, 36(11): 1122001. doi: 10.3788/AOS201636.1122001
|
[20] |
ASTM Committees. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM E637-22[S]. West Conshohocken, PA, United States: ASTM International, 2022. doi: 10.1520/E0637-22
|
[21] |
朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11. DOI: 10.11823∕j.issn.1674-5795.2018.05.02
ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11. doi: 10.11823∕j.issn.1674-5795.2018.05.02
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |