Turn off MathJax
Article Contents
FENG C,GU Y S,FANG R S,et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071
Citation: FENG C,GU Y S,FANG R S,et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071

Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle

doi: 10.11729/syltlx20220071
  • Received Date: 2022-08-03
  • Accepted Date: 2022-10-13
  • Rev Recd Date: 2022-10-12
  • Available Online: 2022-12-27
  • We designed an underwater passive fluidic thrust vectoring nozzle. It can easily generate pressure difference on both sides of the primary jet to deflect the jet only by controlling the valves of the secondary flow channel. However, the nonlinear features in the control law of the thrust vectoring angle such as “sudden jump” and “hysteresis” limit the further application of this technology. In this research, the flow characteristics of the primary jet in different transverse sections of the nozzle were studied by the dye flow visualization technology and particle image velocimetry technology. We discovered flow structures such as shear layer vortices, trailing edge backflow, and separation bubbles. Three-dimensional flow structures were also observed, including the transverse flow in the near-wall region and the corner flow at the joint of two walls. The study of the interaction law between flow structures provides a physical model basis for solving the nonlinear problems such as jump and hysteresis of the thrust vectoring control law.
  • loading
  • [1]
    郭隆华. BAE系统公司推出“泰利斯曼”近海UUV进行近距离侦查[J]. 舰船科学技术, 2009, 31(7): 98.
    [2]
    难波直爱, 清水彻, 渡道昶彦, 等. 全方向推力推進器の開発(その1)[C]//日本船舶海洋工学会. 关西造船协会志: 210卷. 1988: 1-8.doi: 10.14856/kansaiks.210.0_1
    [3]
    常欣, 邹经湘, 郭春雨, 等. 螺距角和纵倾角对全方向推进器水动力性能的影响[J]. 船海工程, 2010, 39(2): 26–29. doi: 10.3963/j.issn.1671-7953.2010.02.007

    CHANG X, ZOU J X, GUO C Y, et al. The influence of pitch angle and rake angle upon hydrodynamic performance for variable vector propeller[J]. Ship & Ocean Engineering, 2010, 39(2): 26–29. doi: 10.3963/j.issn.1671-7953.2010.02.007
    [4]
    贡毅敏. 全方向推进器的设计及其在潜艇上的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.

    GONG Y M. The design of variable vector propeller and research on the application to submarine[D]. Harbin: Harbin Engineering University, 2006.
    [5]
    付建, 宋振海, 王永生, 等. 泵喷推进器水动力噪声的数值预报[J]. 船舶力学, 2016, 20(5): 613–619. doi: 10.3969/j.issn.1007-7294.2016.05.012

    FU J, SONG Z H, WANG Y S, et al. Numerical predicting of hydroacoustics of pumpjet propulsor[J]. Journal of Ship Mechanics, 2016, 20(5): 613–619. doi: 10.3969/j.issn.1007-7294.2016.05.012
    [6]
    鹿麟. 泵喷推进器设计与流场特性研究[D]. 西安: 西北工业大学, 2016.

    LU L. Reaseach on design and flow field characteristic of the pumpjet propulsor[D]. Xi'an: Northwestern Polytechnical University, 2016.
    [7]
    周运凯. 水下泵喷推进器设计方法与数值优化研究[D]. 镇江: 江苏大学, 2020.

    ZHOU Y K. Research on underwater pumpjet design method and numerical optimization[D]. Zhenjiang: Jiangsu University, 2020. doi: 10.27170/d.cnki.gjsuu.2020.000131
    [8]
    ROBER N, CICHELLA V, EZEQUIEL MARTIN J, et al. Three-dimensional path-following control for an underwater vehicle[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1345–1355. doi: 10.2514/1.G005503
    [9]
    ALLISON J. Marine waterjet propulsion[C]//Proceedings of the SNAME Annual Meeting. New York, USA: SNAME, 1993, 101: 275-335.
    [10]
    ARL. The history of the past, highly classified centre of physical research, problem-solving and operational improvements for the Royal Navy: Admiralty Research Laboratory (ARL) [EB/OL]. [2018-7-31]. http://arl-teddington.org.uk/.
    [11]
    刘文峰, 胡欲立. 新型水下集成电机推进装置的泵喷射推进器结构原理及特点分析[J]. 鱼雷技术, 2007, 15(6): 5–8.

    LIU W F, HU Y L. Analysis of construction principle and characteristics of pump-jet for underwater integrated motor propulsor[J]. Torpedo Technology, 2007, 15(6): 5–8.
    [12]
    NAWROT M T. Conceptual design of a thrust-vectoring tailcone for underwater robotics[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2012.
    [13]
    CAVALLO E, MICHELINI R C, FILARETOV V F. Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster[J]. Journal of Intelligent and Robotic Systems, 2004, 39(4): 365–391. doi: 10.1023/b:jint.0000026081.75417.50
    [14]
    魏东杰. 水下机器人并联式矢量推进器设计与研究[D]. 天津: 天津大学, 2014.

    WEI D J. Design and research of the underwater robot vectored thruster with parallel mechanism[D]. Tianjin: Tianjin University, 2014.
    [15]
    耿令波, 胡志强, 林扬, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016

    GENG L B, HU Z Q, LIN Y, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerospace Power, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016
    [16]
    韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.

    HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [17]
    FLAMM J. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[C]//Proc of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1998: 3255. doi: 10.2514/6.1998-3255
    [18]
    刘赵淼, 徐迎丽, 申峰. 几何构型对逆流推力矢量喷管特性影响[J]. 航空动力学报, 2014, 29(6): 1417–1425. doi: 10.13224/j.cnki.jasp.2014.06.023

    LIU Z M, XU Y L, SHEN F. Geometric configuration on the performance of counterflow thrust vectoring nozzle[J]. Journal of Aerospace Power, 2014, 29(6): 1417–1425. doi: 10.13224/j.cnki.jasp.2014.06.023
    [19]
    CHANDRA SEKAR T, JAISWAL K, ARORA R, et al. Nozzle performance maps for fluidic thrust vectoring[J]. Journal of Propulsion and Power, 2021, 37(2): 314–325. doi: 10.2514/1.b38044
    [20]
    WU K X, KIM T, KIM H. Sensitivity analysis of counterflow thrust vector control with a three-dimensional rectangular nozzle[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020107. doi: 10.1061/(asce)as.1943-5525.0001228
    [21]
    BOURQUE C, NEWMAN B G. Reattachment of a two-dimensional, incompressible jet to an adjacent flat plate[J]. Aeronautical Quarterly, 1960, 11(3): 201–232. doi: 10.1017/s0001925900001797
    [22]
    LI Y J. Fluidic thrust vectoring techniques research[J]. Aircraft Design, 2008, 28(2): 19–24.
    [23]
    肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974.

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974.
    [24]
    史经纬, 王占学, 张晓博, 等. 逆流推力矢量喷管主流附体及控制方法研究[J]. 空气动力学学报, 2013, 31(6): 723–726, 738.

    SHI J W, WANG Z X, ZHANG X B, et al. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. Acta Aerodynamica Sinica, 2013, 31(6): 723–726, 738.
    [25]
    龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609
    [26]
    龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京: 南京航空航天大学, 2020.

    GONG D S. Research on passive fluid thrust vector nozzle based on micro turbojet engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. doi: 10.27239/d.cnki.gnhhu.2020.000492
    [27]
    温俊杰. 无源受控扰动下Coanda附壁射流离壁过程研究[D]. 南京: 南京航空航天大学, 2019.

    WEN J J. Study on the transient separation process of coanda wall-attached jet under passive controlled excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. doi: 10.27239/d.cnki.gnhhu.2019.000032
    [28]
    SHI N X, GU Y S, ZHOU Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. doi: 10.1063/5.0101994
    [29]
    曹永飞. 射流推力矢量控制[D]. 南京: 南京航空航天大学, 2012.

    CAO Y F. Fluidic thrust vector control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)

    Article Metrics

    Article views (233) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return