Citation: | CHEN J L, DING H Y, HU H B, et al. Research on real-time display of flow field based on optical flow algorithm[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20240027. |
In this paper, Lucas-Kanade (LK) optical flow algorithm with high efficiency and Liu-Shen (LS) optical flow algorithm with strong physical properties are combined to achieve high precision real-time display of the flow field. The efficiency, accuracy and robustness of the algorithm are tested by the synthetic particle image test and the towing flume device, which is compared with the cross-correlation algorithm. In the test of synthetic image data set, LK-I algorithm has the shortest computing time, only 15ms. LK-S&LS algorithm has the highest computational accuracy and robustness, and its root-mean-square error and angular errors are 0.073 and 1.56 respectively with the strongest anti-noise ability. Cross-correlation algorithm takes 1500ms, and its root-mean-square error and angular error are 0.128 and 3.13 respectively, so it is obviously inferior to the other two optical flow algorithms. In the experimental test based on the towing flume, both LK and LK&LS coupling algorithms can quickly display the velocity field and vorticity field in the near-wake region. The results show that LK&LS algorithm has the least flow field noisy points, while cross-correlation algorithm has the most noisy points. This research can also provide some algorithm support for the realization of blunt body drag and noise reduction in the following real-time control problems.
[1] |
REN F, WANG C L, TANG H. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth[J]. Physics of Fluids, 2021, 33(9): 093602. doi: 10.1063/5.0060690
|
[2] |
TAIRA K, HEMATI M S, BRUNTON S L, et al. Modal analysis of fluid flows: applications and outlook[J]. AIAA Journal, 2020, 58(3): 998–1022. doi: 10.2514/1.j058462
|
[3] |
UNNIKRISHNAN S. Recent advances in feature extraction techniques for high-speed flowfields[J]. Progress in Aerospace Sciences, 2023, 140: 100918. doi: 10.1016/j.paerosci.2023.100918
|
[4] |
田丰林, 王昊, 刘巍, 等. 基于传输函数的二/三维全时空连续海洋中尺度涡旋流场实时可视化[J]. 海洋科学, 2023, 47(9): 12–27. DOI: 10.11759/hykx20220519001
TIAN F L, WANG H, LIU W, et al. Real-time visualization of 2D/3D full spatiotemporal continuous ocean mesoscale eddy fields based on the transfer function[J]. Marine Sciences, 2023, 47(9): 12–27. doi: 10.11759/hykx20220519001
|
[5] |
YE X W, NIU X J. Optimization in PIV algorithm for visualizing vortices in bubble wake[J]. Flow Measurement and Instrumentation, 2022, 86: 102177. doi: 10.1016/j.flowmeasinst.2022.102177
|
[6] |
KOROTEEVA E Y, RYAZANOV P A, ZNAMENSKAYA I A. Cross-correlation image processing applications in time-resolved thermography of near-wall flows[J]. Journal of Flow Visualization and Image Processing, 2021, 28(4): 41–51. doi: 10.1615/jflowvisimageproc.2021038337
|
[7] |
田野, 黄仕迪. 基于互相关的光流测速法在湍流热对流中的应用[J]. 空气动力学学报, 2022, 40(2): 215–222. DOI: 10.7638/kqdlxxb-2022.0017
TIAN Y, HUANG S D. Simultaneous measurements of large- and small-scale flow properties in turbulent convection by cross-correlation based optical flow velocimetry[J]. Acta Aerodynamica Sinica, 2022, 40(2): 215–222. doi: 10.7638/kqdlxxb-2022.0017
|
[8] |
李拓, 张清福, 潘翀, 等. 基于粒子图像分割的混合PIV-PTV算法[J]. 空气动力学学报, 2024, 42(2): 68–75. DOI: 10.7638/kqdlxxb-2023.0031
LI T, ZHANG Q F, PAN C, et al. Hybrid PIV-PTV algorithm based on particle image segmentation[J]. Acta Aerodynamica Sinica, 2024, 42(2): 68–75. doi: 10.7638/kqdlxxb-2023.0031
|
[9] |
WAN N, QIAN X C, YAN Y. Review of cross-correlation velocimetry algorithms for multiphase flow measurement[J]. Journal of Electronic Measurement and Instrument, 2022, 36(5): 1–11. doi: 10.13382/j.jemi.B2104846
|
[10] |
HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3): 185–203. doi: 10.1016/0004-3702(81)90024-2
|
[11] |
邵绪强, 杨艳, 刘艺林. 流体运动估计光流算法研究综述[J]. 中国图象图形学报, 2021, 26(2): 355–367. DOI: 10.11834/jig.200050
SHAO X Q, YANG Y, LIU Y L. Review of optical flow algorithms in fluid motion estimation[J]. Journal of Image and Graphics, 2021, 26(2): 355–367. doi: 10.11834/jig.200050
|
[12] |
朱海军, 王倩, 梅笑寒, 等. 基于高速纹影/阴影成像的流场测速技术研究进展[J]. 实验流体力学, 2022, 36(2): 49–73. DOI: 10.11729/syltlx20210110
ZHU H J, WANG Q, MEI X H, et al. A review on flow field velocimetry based on high-speed schlieren/shadowgraph systems[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 49–73. doi: 10.11729/syltlx20210110
|
[13] |
LU J, YANG H, ZHANG Q H, et al. A field-segmentation-based variational optical flow method for PIV measurements of nonuniform flows[J]. Experiments in Fluids, 2019, 60(9): 142. doi: 10.1007/s00348-019-2787-1
|
[14] |
NICOLAS A, ZENTGRAF F, LINNE M, et al. Assessment and application of wavelet-based optical flow velocimetry (wOFV) to wall-bounded turbulent flows[J]. Experiments in Fluids, 2023, 64(3): 50. doi: 10.1007/s00348-023-03594-y
|
[15] |
GIANNOPOULOS A, PASSAGGIA P Y, MAZELLIER N, et al. On the optimal window size in optical flow and cross-correlation in particle image velocimetry: application to turbulent flows[J]. Experiments in Fluids, 2022, 63(3): 57. doi: 10.1007/s00348-022-03410-z
|
[16] |
LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Proceed-ings of the 7th international joint conference on artificial intelligence. 1981.
|
[17] |
PLYER A, LE BESNERAIS G, CHAMPAGNAT F. Massively parallel Lucas Kanade optical flow for real-time video processing applications[J]. Journal of Real-Time Image Processing, 2016, 11(4): 713–730. doi: 10.1007/s11554-014-0423-0
|
[18] |
LIU T S, SHEN L X. Fluid flow and optical flow[J]. Journal of Fluid Mechanics, 2008, 614: 253–291. doi: 10.1017/s0022112008003273
|
[19] |
MENDES L, BERNARDINO A, FERREIRA R M L. Piv-image-generator: an image generating software package for planar PIV and Optical Flow benchmarking[J]. SoftwareX, 2020, 12: 100537. doi: 10.1016/j.softx.2020.100537
|
[20] |
李成美, 白宏阳, 郭宏伟, 等. 一种改进光流法的运动目标检测及跟踪算法[J]. 仪器仪表学报, 2018, 39(5): 249–256. DOI: 10.19650/j.cnki.cjsi.J1803270
LI C M, BAI H Y, GUO H W, et al. Moving object detection and tracking based on improved optical flow method[J]. Chinese Journal of Scientific Instrument, 2018, 39(5): 249–256. doi: 10.19650/j.cnki.cjsi.J1803270
|
[21] |
LIN D, GRUNDMANN J, ELTNER A. Evaluating image tracking approaches for surface velocimetry with thermal tracers[J]. Water Resources Research, 2019, 55(4): 3122–3136. doi: 10.1029/2018wr024507
|
[22] |
MENDES L P N, RICARDO A M C, BERNARDINO A J M, et al. A comparative study of optical flow methods for fluid mechanics[J]. Experiments in Fluids, 2021, 63(1): 7. doi: 10.1007/s00348-021-03357-7
|
[23] |
LAGE FERREIRA R M, MENDES L P N, RICARDO A M, et al. Accuracy of Optical Flow methods in rotation-dominated and shear-dominated flows[C]//Proceedings of the 39th IAHR World Congress. 2022. doi: 10.3850/iahr-39wc2521711920221558
|
[24] |
MENDES L P N, RICARDO A M C, BERNARDINO A J M, et al. A hybrid PIV/optical flow method for incompressible turbulent flows[J]. Water, 2024, 16(7): 1021. doi: 10.3390/w16071021
|
[25] |
CAI S Z, ZHOU S C, XU C, et al. Dense motion estimation of particle images via a convolutional neural network[J]. Experiments in Fluids, 2019, 60(4): 73. doi: 10.1007/s00348-019-2717-2
|
[26] |
QU Y, WANG J J, SUN M, et al. Wake vortex evolution of square cylinder with a slot synthetic jet positioned at the rear surface[J]. Journal of Fluid Mechanics, 2017, 812: 940–965. doi: 10.1017/jfm.2016.833
|
[27] |
WILLIAMSON C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers[J]. Journal of Fluid Mechanics, 1989, 206: 579–627. doi: 10.1017/S0022112089002429
|
[28] |
PERSILLON H, BRAZA M. Physical analysis of the transition to turbulence in the wake of a circular cylinder by three-dimensional Navier Stokes simulation[J]. Journal of Fluid Mechanics, 1998, 365(1): 23–88. doi: 10.1017/S0022112098001116
|
[1] | ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100 |
[2] | GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113 |
[3] | ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062 |
[4] | Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163 |
[7] | Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019 |
[8] | Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017 |
[9] | YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018 |
[10] | GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002 |