Citation: | LIN W T, ZHU B W, YU Y L. Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230089. |
[1] |
BUNGET G, SEELECKE S. BATMAV: a biologically inspired micro-air vehicle for flapping flight: kinematic modeling[C]// Active and Passive Smart Structures and Integrated Systems 2008. 2008.
|
[2] |
BUNGET G. BATMAV: a bio-inspired micro-air vehicle for flapping flight[M]. Raleigh: North Carolina State University, 2010.
|
[3] |
KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089–1094. doi: 10.1126/science.aat0350
|
[4] |
DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092–3099. doi: 10.1016/j.cja.2020.04.024
|
[5] |
RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3): eaal2505. doi: 10.1126/scirobotics.aal2505
|
[6] |
TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803–2829. doi: 10.1242/jeb.00501
|
[7] |
SONG J L, LUO H X, HEDRICK T L. Performance of a quasi-steady model for hovering hummingbirds[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 50–53. doi: 10.1016/j.taml.2014.12.003
|
[8] |
XU R, ZHANG X D, LIU H. Effects of wing-to-body mass ratio on insect flapping flights[J]. Physics of Fluids, 2021, 33(2): 021902. doi: 10.1063/5.0034806
|
[9] |
RISKIN D K, BERGOU A, BREUER K S, et al. Upstroke wing flexion and the inertial cost of bat flight[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1740): 2945–2950. doi: 10.1098/rspb.2012.0346
|
[10] |
HEDRICK T L, USHERWOOD J R, BIEWENER A A. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation[J]. The Journal of Experimental Biology, 2007, 210(Pt 11): 1912–1924.
|
[11] |
FAN X Z, SWARTZ S M, BREUER K. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings[J]. Journal of the Royal Society Interface, 2022, 19(194): 20220315. doi: 10.1098/rsif.2022.0315
|
[12] |
WEIS-FOGH T. Energetics of hovering flight in hummingbirds and in drosophila[J]. Journal of Experimental Biology, 1972, 56(1): 79–104. doi: 10.1242/jeb.56.1.79
|
[13] |
LIANG B, SUN M. Dynamic flight stability of a hovering model dragonfly[J]. Journal of Theoretical Biology, 2014, 348: 100–112. doi: 10.1016/j.jtbi.2014.01.026
|
[14] |
RAHMAN A, TAFTI D. Role of wing inertia in maneuvering bat flights[J]. Bioinspiration & Biomimetics, 2023, 18(1): 016007. doi: 10.1088/1748-3190/ac9fb1
|
[15] |
FAN X Z, BREUER K. Low-order modeling of flapping flight with highly articulated, cambered, heavy wings[J]. AIAA Journal, 2022, 60(2): 892–901. doi: 10.2514/1.j060661
|
[16] |
YUSOFF H, ABDULLAH M Z, et al. Effect of skin flexibility on aerodynamic performance of flexible skin flapping wings for micro air vehicles[J]. Experimental Techniques, 2015, 39(1): 11–20. doi: 10.1111/ext.12004
|
[17] |
WU P, STANFORD B K, SÄLLSTRÖM E, et al. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings[J]. Bioinspiration & Biomimetics, 2011, 6(1): 016009. doi: 10.1088/1748-3182/6/1/016009
|
[18] |
HOPE D K, DELUCA A M, O’HARA R P. Investigation into Reynolds number effects on a biomimetic flapping wing[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 106–122. doi: 10.1177/1756829317745319
|
[19] |
YIN D F, ZHANG Z S, DAI M. Effects of inertial power and inertial force on bat wings[J]. Zoological Science, 2016, 33(3): 239–245. doi: 10.2108/zs150182
|
[20] |
YIN D F, ZHANG Z S. The inertial power and inertial force of robotic and natural bat wing[J]. Comptes Rendus Mécanique, 2016, 344(3): 195–207. doi: 10.1016/j.crme.2015.11.002
|
[21] |
YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63–76. doi: 10.1016/j.cja.2021.09.020
|
[22] |
TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738. doi: 10.1016/j.paerosci.2021.100738
|
[23] |
ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718
|
[24] |
BLEISCHWITZ R, DE KAT R, GANAPATHISUBRA-MANI B. On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect[J]. Journal of Fluids and Structures, 2017, 70: 214-234.
|
[25] |
ADDO-AKOTO R, HAN J S, HAN J H. Aerodynamic characteristics of flexible flapping wings depending on aspect ratio and slack angleJ]. Physics of Fluids, 2022, 34(5): 051911.
|
[26] |
朱博闻, 余永亮. 仿蝙蝠翼变形挥拍的气动力特性研究[J/OL]. 中国科学院大学学报. http://journal.ucas.ac.cn /CN/10.7523/j.ucas.2023.051. .
ZHU B W, YU Y L. Study on aerodynamic characteristics of deforming bat-like wing in forward flight[J/OL]. Journal of University of Chinese Academy of Sciences. http://journal.ucas.ac.cn/CN/10.7523/j.ucas.2023. 051. .
|
[1] | ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011 |
[2] | GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036 |
[5] | Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142 |
[6] | Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108 |
[7] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[8] | Wang Xin, Yang Ying, Ma Yunchi, Ma Weiwei. Research on synchronous measurement of temperature and velocity in melt-blowing flow field based on hot-wire anemometer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 91-96. DOI: 10.11729/syltlx20150068 |
[9] | LUN Li-yong, CHEN Hou-lei, CAI Jing-hui. Investigation on calibration method of hot-wire anemometer in high pressure reciprocating flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 87-91. DOI: 10.3969/j.issn.1672-9897.2010.03.018 |
[10] | SHENG Sen-zhi, ZHUANG Yong-ji, LIU Zong-yan. A new type of hot-wire/film anemometer[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 89-93. DOI: 10.3969/j.issn.1672-9897.2009.01.020 |