LIN W T, ZHU B W, YU Y L. Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230089.
Citation: LIN W T, ZHU B W, YU Y L. Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230089.

Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing

More Information
  • Received Date: July 06, 2023
  • Revised Date: September 10, 2023
  • Accepted Date: September 12, 2023
  • Available Online: November 12, 2023
  • Inertia force and aerodynamic force are often coupled in flapping motion. In order to study the aerodynamic characteristics of a bat flexible membrane wing in flapping motion, it is necessary to separate the inertia force and the aerodynamic force to obtain the aerodynamic force. By setting up a photographic platform based on multi-vision, images of flexible membrane wings with different properties were captured, and a multi-vision algorithm was used to reconstruct the deformation of the flexible membrane wing, so the inertia force can be calculated from the deformation. A six-axis force sensor was used to obtain the real-time force of the flexible membrane wing, then the aerodynamic force can be obtained by eliminating the inertia force, and the law between the inertia force and the aerodynamic force was analyzed. A standard model verifies that the deformation error of this method is 2.36%. The results show that the highly flexible wing membrane has a significant deformation during the flapping process, which is related to both inertia force and aerodynamic force. And with the increase of the thickness of the wing membrane, the inertia force and the aerodynamic force are increased to different extents.
  • [1]
    BUNGET G, SEELECKE S. BATMAV: a biologically inspired micro-air vehicle for flapping flight: kinematic modeling[C]// Active and Passive Smart Structures and Integrated Systems 2008. 2008.
    [2]
    BUNGET G. BATMAV: a bio-inspired micro-air vehicle for flapping flight[M]. Raleigh: North Carolina State University, 2010.
    [3]
    KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089–1094. doi: 10.1126/science.aat0350
    [4]
    DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092–3099. doi: 10.1016/j.cja.2020.04.024
    [5]
    RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3): eaal2505. doi: 10.1126/scirobotics.aal2505
    [6]
    TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803–2829. doi: 10.1242/jeb.00501
    [7]
    SONG J L, LUO H X, HEDRICK T L. Performance of a quasi-steady model for hovering hummingbirds[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 50–53. doi: 10.1016/j.taml.2014.12.003
    [8]
    XU R, ZHANG X D, LIU H. Effects of wing-to-body mass ratio on insect flapping flights[J]. Physics of Fluids, 2021, 33(2): 021902. doi: 10.1063/5.0034806
    [9]
    RISKIN D K, BERGOU A, BREUER K S, et al. Upstroke wing flexion and the inertial cost of bat flight[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1740): 2945–2950. doi: 10.1098/rspb.2012.0346
    [10]
    HEDRICK T L, USHERWOOD J R, BIEWENER A A. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation[J]. The Journal of Experimental Biology, 2007, 210(Pt 11): 1912–1924.
    [11]
    FAN X Z, SWARTZ S M, BREUER K. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings[J]. Journal of the Royal Society Interface, 2022, 19(194): 20220315. doi: 10.1098/rsif.2022.0315
    [12]
    WEIS-FOGH T. Energetics of hovering flight in hummingbirds and in drosophila[J]. Journal of Experimental Biology, 1972, 56(1): 79–104. doi: 10.1242/jeb.56.1.79
    [13]
    LIANG B, SUN M. Dynamic flight stability of a hovering model dragonfly[J]. Journal of Theoretical Biology, 2014, 348: 100–112. doi: 10.1016/j.jtbi.2014.01.026
    [14]
    RAHMAN A, TAFTI D. Role of wing inertia in maneuvering bat flights[J]. Bioinspiration & Biomimetics, 2023, 18(1): 016007. doi: 10.1088/1748-3190/ac9fb1
    [15]
    FAN X Z, BREUER K. Low-order modeling of flapping flight with highly articulated, cambered, heavy wings[J]. AIAA Journal, 2022, 60(2): 892–901. doi: 10.2514/1.j060661
    [16]
    YUSOFF H, ABDULLAH M Z, et al. Effect of skin flexibility on aerodynamic performance of flexible skin flapping wings for micro air vehicles[J]. Experimental Techniques, 2015, 39(1): 11–20. doi: 10.1111/ext.12004
    [17]
    WU P, STANFORD B K, SÄLLSTRÖM E, et al. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings[J]. Bioinspiration & Biomimetics, 2011, 6(1): 016009. doi: 10.1088/1748-3182/6/1/016009
    [18]
    HOPE D K, DELUCA A M, O’HARA R P. Investigation into Reynolds number effects on a biomimetic flapping wing[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 106–122. doi: 10.1177/1756829317745319
    [19]
    YIN D F, ZHANG Z S, DAI M. Effects of inertial power and inertial force on bat wings[J]. Zoological Science, 2016, 33(3): 239–245. doi: 10.2108/zs150182
    [20]
    YIN D F, ZHANG Z S. The inertial power and inertial force of robotic and natural bat wing[J]. Comptes Rendus Mécanique, 2016, 344(3): 195–207. doi: 10.1016/j.crme.2015.11.002
    [21]
    YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63–76. doi: 10.1016/j.cja.2021.09.020
    [22]
    TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738. doi: 10.1016/j.paerosci.2021.100738
    [23]
    ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718
    [24]
    BLEISCHWITZ R, DE KAT R, GANAPATHISUBRA-MANI B. On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect[J]. Journal of Fluids and Structures, 2017, 70: 214-234.
    [25]
    ADDO-AKOTO R, HAN J S, HAN J H. Aerodynamic characteristics of flexible flapping wings depending on aspect ratio and slack angleJ]. Physics of Fluids, 2022, 34(5): 051911.
    [26]
    朱博闻, 余永亮. 仿蝙蝠翼变形挥拍的气动力特性研究[J/OL]. 中国科学院大学学报. http://journal.ucas.ac.cn /CN/10.7523/j.ucas.2023.051. .

    ZHU B W, YU Y L. Study on aerodynamic characteristics of deforming bat-like wing in forward flight[J/OL]. Journal of University of Chinese Academy of Sciences. http://journal.ucas.ac.cn/CN/10.7523/j.ucas.2023. 051. .
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [5]Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
    [6]Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108
    [7]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [8]Wang Xin, Yang Ying, Ma Yunchi, Ma Weiwei. Research on synchronous measurement of temperature and velocity in melt-blowing flow field based on hot-wire anemometer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 91-96. DOI: 10.11729/syltlx20150068
    [9]LUN Li-yong, CHEN Hou-lei, CAI Jing-hui. Investigation on calibration method of hot-wire anemometer in high pressure reciprocating flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 87-91. DOI: 10.3969/j.issn.1672-9897.2010.03.018
    [10]SHENG Sen-zhi, ZHUANG Yong-ji, LIU Zong-yan. A new type of hot-wire/film anemometer[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 89-93. DOI: 10.3969/j.issn.1672-9897.2009.01.020
  • Cited by

    Periodical cited type(3)

    1. 宋光韬,葛建辉,马钊,王恒,吕郑,徐惊雷. 并联TBCC排气系统稳态与模态转换实验研究. 推进技术. 2024(04): 51-61 .
    2. 赵春梅,王恒,王俊,钟世林,蒲永彬,任亚强. 涡轮冲压组合喷管运动机构布局研究综述. 航空发动机. 2024(06): 13-18 .
    3. 彭波,徐惊雷. 并联TBCC排气系统模态转换过程动态特性研究. 机械制造与自动化. 2022(05): 194-198 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close