Citation: | WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144 |
[1] |
STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
|
[2] |
PLENTOVIC E B, STALLINGS R L, TRACY M B. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-3358, 1993.
|
[3] |
ROSSITER J E. Wind tunnel experimental on the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC/R&M-3438, 1964.
|
[4] |
ZHANG J, MORISHITA E, OKUNUKI T, et al. Experi-mental and computational investigation of supersonic cavity flows[C]//Proc of the 10th AIAA/NAL-NASDA-ISAS Inter-national Space Planes and Hypersonic Systems and Techno-logies Conference. 2001. doi: 10.2514/6.2001-1755
|
[5] |
LOUIS G K, RODNEY L C. Mach 0.6 to 3.0 flows over rectangular cavities[R]. AFWAL-TR-82-3112, 1983.
|
[6] |
吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71–75. DOI: 10.3969/j.issn.1672-9897.2008.01.015
WU J F, LUO X F, FAN Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and super-sonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71–75. doi: 10.3969/j.issn.1672-9897.2008.01.015
|
[7] |
ÜNALMIS Ö H, CLEMENS N T, DOLLING D S. Planar laser imaging of a supersonic side-facing cavity[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-297
|
[8] |
HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities – physical mechanisms and suppression concepts[R]. AFFDL TR-74-133, 1975.
|
[9] |
杨党国, 祝静, 李建强, 等. 跨超声速开式空腔流激振荡模态预估分析[J]. 空气动力学学报, 2014, 32(3): 369–375. DOI: 10.7638/kqdlxxb-2012.0126
YANG D G, ZHU J, LI J Q, et al. Prediction and analysis of flow oscillation modes inside open cavities at transonic or supersonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(3): 369–375. doi: 10.7638/kqdlxxb-2012.0126
|
[10] |
CLARK R L. Weapons Bay Turbulence Reduction Techni-ques[R]. AFFDL TM-75-147-FXM, 1975. doi: 10.21236/ada334771
|
[11] |
LONG D A. An examination of pressure fluctuations in open cavities at transonic speeds[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3100
|
[12] |
SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2015, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2
|
[13] |
LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.J056689
|
[14] |
陶洋, 吴继飞, 徐来武, 等. 基于前缘边界层扰动的空腔压力脉动抑制研究[J]. 实验流体力学, 2016, 30(3): 66–70. DOI: 10.11729/syltlx20150103
TAO Y, WU J F, XU L W, et al. Control of cavity flow pressure oscillation through leading edge boundary layer perturbation[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 66–70. doi: 10.11729/syltlx20150103
|
[15] |
周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 121812.
ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121812.
|
[16] |
CHAUDHARI K, RAMAN G. Control of flow over a rectangular cavity using a rod in cross flow: further evaluation of key mechanisms[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-37
|
[17] |
DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1–22. doi: 10.1007/s00348-014-1810-9
|
[18] |
吴继飞, 徐来武, 范召林, 等. 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015, 36(7): 2155–2165.
WU J F, XU L W, FAN Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155–2165.
|
[19] |
STANEK M, RAMAN G, ROSS J, et al. High frequency acoustic suppression - the role of mass flow & the notion of superposition[C]//Proc of the 8th AIAA/CEAS Aeroacous-tics Conference & Exhibit. 2002. doi: 10.2514/6.2002-2404
|
[20] |
杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6): 1007–1014.
YANG D G, WU J F, LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astro-nautica Sinica, 2011, 32(6): 1007–1014.
|
[21] |
CHAN S, ZHANG X, GABRIEL S. The attenuation of cavity tones using plasma actuators[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2802
|
[22] |
BLAIR A, STALLINGS R. Cavity door effects on aero-dynamic loadings of compressed-carriage store configurations separating from cavities at supersonic speeds[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-333
|
[23] |
SAHOO D, ANNASWAMY A, ALVI F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-3097
|
[24] |
吴继飞, 罗新福, 范召林. 内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840–1845. DOI: 10.3321/j.issn:1000-6893.2009.10.008
WU J F, LUO X F, FAN Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840–1845. doi: 10.3321/j.issn:1000-6893.2009.10.008
|
[25] |
吴继飞, 罗新福, 徐来武, 等. 内埋武器分离特性及其改进方法研究[J]. 空气动力学学报, 2014, 32(6): 814–819. DOI: 10.7638/kqdlxxb-2012.0178
WU J F, LUO X F, XU L W, et al. Investigation on internal weapon separation characteristics and flow control methods[J]. Acta Aerodynamica Sinica, 2014, 32(6): 814–819. doi: 10.7638/kqdlxxb-2012.0178
|
[26] |
吴继飞, 徐来武, 范召林, 等. 内埋弹舱舱门气动特性研究[J]. 空气动力学学报, 2012, 30(6): 744–748.
WU J F, XU L W, FAN Z L, et al. Investigation on aerodynamic characteristics of internal bay's door[J]. Acta Aerodynamica Sinica, 2012, 30(6): 744–748.
|
[27] |
吴继飞, 徐来武, 郭洪涛, 等. 内埋武器舱舱门开闭动态模拟试验技术研究[J]. 实验流体力学, 2015, 29(4): 88–94. DOI: 10.11729/syltlx20140131
WU J F, XU L W, GUO H T, et al. Investigation on dynamic simulation technology of internal weapons bay's doors opening and closing[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 88–94. doi: 10.11729/syltlx20140131
|
[28] |
HAMMAD K J. Coherent structures in turbulent boundary layer flows over a shallow cavity[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. 2018. doi: 10.1115/IMECE2017-70142
|
[29] |
RITCHIE S, LAWSON N, KNOWLES K. Application of particle image velocimetry to transonic cavity flows[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-1060
|
[30] |
BERESH S J, WAGNER J L, PRUETT B O M, et al. Supersonic flow over a finite-width rectangular cavity[J]. AIAA Journal, 2015, 53(2): 296–310. doi: 10.2514/1.J053097
|
[1] | SUN Shu, ZHANG Wenmin, JIA Shangshuai. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 91-98. DOI: 10.11729/syltlx20230029 |
[2] | ZHANG Zongfa, XIAO Xinbiao, HAN Jian, YANG Yi. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90. DOI: 10.11729/syltlx20230065 |
[3] | CHEN Dawei, LIU Jiali, YAO Shuanbao, WANG Weibin. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136 |
[4] | LI Yifan, LI Tian, ZHANG Jiye, ZHANG Weihua. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109 |
[5] | YANG Wenzhe, LIU Feng, WEI Mengjie, YAO Shuanbao, CHEN Dawei. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43. DOI: 10.11729/syltlx20220096 |
[6] | GAO Jianyong, ZHANG Jun, NI Zhangsong, ZHOU Peng, ZHU Yan, WANG Chengqiang, GAO Guangjun. The aerodynamic characteristics of roof-wing combination of a high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 29-35. DOI: 10.11729/syltlx20220053 |
[7] | DING Sansan, LIU Jiali, CHEN Dawei. Aerodynamic design of the 600 km/h high-speed maglev transportation system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 1-8. DOI: 10.11729/syltlx20220131 |
[8] | WANG Bin, LIANG Jie, WANG Pan, GU Zhenghua, GAI Wen. A Bernoulli sampling based image real-time compression method for high-speed camera[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 52-57. DOI: 10.11729/syltlx20200052 |
[9] | Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003 |
[10] | Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124 |
1. |
周方奇,王显圣,杨党国,吴继飞,杨可,董宾. 跨声速空腔剪切层动态特征传播特性研究. 实验流体力学. 2024(01): 103-108 .
![]() |