WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144
Citation: WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144

Evolution of high-speed cavity flow based on PIV technology

More Information
  • Received Date: September 29, 2021
  • Revised Date: November 27, 2021
  • Accepted Date: December 14, 2021
  • Available Online: November 14, 2022
  • In cavity structure, complex flows and high-intensity noises appear under the high-speed condition, seriously affecting the aerodynamic characteristics and structural safety of the aircraft. Through the methods of the particle image velocimetry technology and dynamic pressure measurement, the cavity with a length-depth ratio of 3 to 10 is experimentally investigated in the range of Mach number 0.4 to 0.8. The influences of the length-depth ratio and Mach number on the flow field structure in the cavity are emphatically analyzed, and the correlations between the noise intensity and the flow velocity are revealed. The results show that: as the length-depth ratio increases, the thickness of the shear layer in the cavity increases rapidly and expands into the cavity, leading the impact position on the cavity to move down from the back wall to the bottom, and causing the flow type in the cavity to change from open to closed. The increase of the Mach number inhibits the shear layer from expanding into the cavity and induces the main recirculation vortex to move back and the flow type to be open. The amplitude of the overall sound pressure level is positively correlated with the flow velocity in the back of the cavity.
  • [1]
    STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-2683, 1987.
    [2]
    PLENTOVIC E B, STALLINGS R L, TRACY M B. Experimental cavity pressure distributions at supersonic speeds[R]. NASA TP-3358, 1993.
    [3]
    ROSSITER J E. Wind tunnel experimental on the flow over rectangular cavities at subsonic and transonic speeds[R]. ARC/R&M-3438, 1964.
    [4]
    ZHANG J, MORISHITA E, OKUNUKI T, et al. Experi-mental and computational investigation of supersonic cavity flows[C]//Proc of the 10th AIAA/NAL-NASDA-ISAS Inter-national Space Planes and Hypersonic Systems and Techno-logies Conference. 2001. doi: 10.2514/6.2001-1755
    [5]
    LOUIS G K, RODNEY L C. Mach 0.6 to 3.0 flows over rectangular cavities[R]. AFWAL-TR-82-3112, 1983.
    [6]
    吴继飞, 罗新福, 范召林. 亚、跨、超声速下空腔流场特性实验研究[J]. 实验流体力学, 2008, 22(1): 71–75. DOI: 10.3969/j.issn.1672-9897.2008.01.015

    WU J F, LUO X F, FAN Z L. Experimental investigation of cavity flow characteristics at subsonic, transonic and super-sonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 71–75. doi: 10.3969/j.issn.1672-9897.2008.01.015
    [7]
    ÜNALMIS Ö H, CLEMENS N T, DOLLING D S. Planar laser imaging of a supersonic side-facing cavity[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-297
    [8]
    HELLER H H, BLISS D B. Aerodynamically induced pressure oscillations in cavities – physical mechanisms and suppression concepts[R]. AFFDL TR-74-133, 1975.
    [9]
    杨党国, 祝静, 李建强, 等. 跨超声速开式空腔流激振荡模态预估分析[J]. 空气动力学学报, 2014, 32(3): 369–375. DOI: 10.7638/kqdlxxb-2012.0126

    YANG D G, ZHU J, LI J Q, et al. Prediction and analysis of flow oscillation modes inside open cavities at transonic or supersonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(3): 369–375. doi: 10.7638/kqdlxxb-2012.0126
    [10]
    CLARK R L. Weapons Bay Turbulence Reduction Techni-ques[R]. AFFDL TM-75-147-FXM, 1975. doi: 10.21236/ada334771
    [11]
    LONG D A. An examination of pressure fluctuations in open cavities at transonic speeds[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3100
    [12]
    SADDINGTON A J, KNOWLES K, THANGAMANI V. Scale effects on the performance of sawtooth spoilers in transonic rectangular cavity flow[J]. Experiments in Fluids, 2015, 57(1): 1–12. doi: 10.1007/s00348-015-2088-2
    [13]
    LUO K Y, ZHU W Q, XIAO Z X, et al. Investigation of spectral characteristics by passive control methods past a supersonic cavity[J]. AIAA Journal, 2018, 56(7): 2669–2686. doi: 10.2514/1.J056689
    [14]
    陶洋, 吴继飞, 徐来武, 等. 基于前缘边界层扰动的空腔压力脉动抑制研究[J]. 实验流体力学, 2016, 30(3): 66–70. DOI: 10.11729/syltlx20150103

    TAO Y, WU J F, XU L W, et al. Control of cavity flow pressure oscillation through leading edge boundary layer perturbation[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 66–70. doi: 10.11729/syltlx20150103
    [15]
    周方奇, 杨党国, 王显圣, 等. 前缘直板扰流对高速空腔的降噪效果分析[J]. 航空学报, 2018, 39(4): 121812.

    ZHOU F Q, YANG D G, WANG X S, et al. Effect of leading edge plate on high speed cavity noise control[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 121812.
    [16]
    CHAUDHARI K, RAMAN G. Control of flow over a rectangular cavity using a rod in cross flow: further evaluation of key mechanisms[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. doi: 10.2514/6.2011-37
    [17]
    DUDLEY J G, UKEILEY L. Passively controlled supersonic cavity flow using a spanwise cylinder[J]. Experiments in Fluids, 2014, 55(9): 1–22. doi: 10.1007/s00348-014-1810-9
    [18]
    吴继飞, 徐来武, 范召林, 等. 开式空腔气动声学特性及其流动控制方法[J]. 航空学报, 2015, 36(7): 2155–2165.

    WU J F, XU L W, FAN Z L, et al. Aeroacoustic characteristics and flow control method of open cavity flow[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7): 2155–2165.
    [19]
    STANEK M, RAMAN G, ROSS J, et al. High frequency acoustic suppression - the role of mass flow & the notion of superposition[C]//Proc of the 8th AIAA/CEAS Aeroacous-tics Conference & Exhibit. 2002. doi: 10.2514/6.2002-2404
    [20]
    杨党国, 吴继飞, 罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6): 1007–1014.

    YANG D G, WU J F, LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astro-nautica Sinica, 2011, 32(6): 1007–1014.
    [21]
    CHAN S, ZHANG X, GABRIEL S. The attenuation of cavity tones using plasma actuators[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2802
    [22]
    BLAIR A, STALLINGS R. Cavity door effects on aero-dynamic loadings of compressed-carriage store configurations separating from cavities at supersonic speeds[C]//Proc of the 26th Aerospace Sciences Meeting. 1988. doi: 10.2514/6.1988-333
    [23]
    SAHOO D, ANNASWAMY A, ALVI F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-3097
    [24]
    吴继飞, 罗新福, 范召林. 内埋式弹舱流场特性及武器分离特性改进措施[J]. 航空学报, 2009, 30(10): 1840–1845. DOI: 10.3321/j.issn:1000-6893.2009.10.008

    WU J F, LUO X F, FAN Z L. Flow control method to improve cavity flow and store separation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1840–1845. doi: 10.3321/j.issn:1000-6893.2009.10.008
    [25]
    吴继飞, 罗新福, 徐来武, 等. 内埋武器分离特性及其改进方法研究[J]. 空气动力学学报, 2014, 32(6): 814–819. DOI: 10.7638/kqdlxxb-2012.0178

    WU J F, LUO X F, XU L W, et al. Investigation on internal weapon separation characteristics and flow control methods[J]. Acta Aerodynamica Sinica, 2014, 32(6): 814–819. doi: 10.7638/kqdlxxb-2012.0178
    [26]
    吴继飞, 徐来武, 范召林, 等. 内埋弹舱舱门气动特性研究[J]. 空气动力学学报, 2012, 30(6): 744–748.

    WU J F, XU L W, FAN Z L, et al. Investigation on aerodynamic characteristics of internal bay's door[J]. Acta Aerodynamica Sinica, 2012, 30(6): 744–748.
    [27]
    吴继飞, 徐来武, 郭洪涛, 等. 内埋武器舱舱门开闭动态模拟试验技术研究[J]. 实验流体力学, 2015, 29(4): 88–94. DOI: 10.11729/syltlx20140131

    WU J F, XU L W, GUO H T, et al. Investigation on dynamic simulation technology of internal weapons bay's doors opening and closing[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(4): 88–94. doi: 10.11729/syltlx20140131
    [28]
    HAMMAD K J. Coherent structures in turbulent boundary layer flows over a shallow cavity[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. 2018. doi: 10.1115/IMECE2017-70142
    [29]
    RITCHIE S, LAWSON N, KNOWLES K. Application of particle image velocimetry to transonic cavity flows[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-1060
    [30]
    BERESH S J, WAGNER J L, PRUETT B O M, et al. Supersonic flow over a finite-width rectangular cavity[J]. AIAA Journal, 2015, 53(2): 296–310. doi: 10.2514/1.J053097
  • Related Articles

    [1]SUN Shu, ZHANG Wenmin, JIA Shangshuai. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 91-98. DOI: 10.11729/syltlx20230029
    [2]ZHANG Zongfa, XIAO Xinbiao, HAN Jian, YANG Yi. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90. DOI: 10.11729/syltlx20230065
    [3]CHEN Dawei, LIU Jiali, YAO Shuanbao, WANG Weibin. Preliminary study on system configuration of ultra high-speed maglev train aerodynamic problem in the low vacuum tube[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 19-26. DOI: 10.11729/syltlx20220136
    [4]LI Yifan, LI Tian, ZHANG Jiye, ZHANG Weihua. Effect of deflector devices on the aerodynamic characteristics of high-speed maglev trains[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 91-99. DOI: 10.11729/syltlx20220109
    [5]YANG Wenzhe, LIU Feng, WEI Mengjie, YAO Shuanbao, CHEN Dawei. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43. DOI: 10.11729/syltlx20220096
    [6]GAO Jianyong, ZHANG Jun, NI Zhangsong, ZHOU Peng, ZHU Yan, WANG Chengqiang, GAO Guangjun. The aerodynamic characteristics of roof-wing combination of a high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 29-35. DOI: 10.11729/syltlx20220053
    [7]DING Sansan, LIU Jiali, CHEN Dawei. Aerodynamic design of the 600 km/h high-speed maglev transportation system[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 1-8. DOI: 10.11729/syltlx20220131
    [8]WANG Bin, LIANG Jie, WANG Pan, GU Zhenghua, GAI Wen. A Bernoulli sampling based image real-time compression method for high-speed camera[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 52-57. DOI: 10.11729/syltlx20200052
    [9]Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003
    [10]Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124
  • Cited by

    Periodical cited type(1)

    1. 周方奇,王显圣,杨党国,吴继飞,杨可,董宾. 跨声速空腔剪切层动态特征传播特性研究. 实验流体力学. 2024(01): 103-108 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (393) PDF downloads (71) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close