WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144
Citation: WU J F, ZHOU F Q, XU L W, et al. Evolution of high-speed cavity flow based on PIV technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 34-41. DOI: 10.11729/syltlx20210144

Evolution of high-speed cavity flow based on PIV technology

  • In cavity structure, complex flows and high-intensity noises appear under the high-speed condition, seriously affecting the aerodynamic characteristics and structural safety of the aircraft. Through the methods of the particle image velocimetry technology and dynamic pressure measurement, the cavity with a length-depth ratio of 3 to 10 is experimentally investigated in the range of Mach number 0.4 to 0.8. The influences of the length-depth ratio and Mach number on the flow field structure in the cavity are emphatically analyzed, and the correlations between the noise intensity and the flow velocity are revealed. The results show that: as the length-depth ratio increases, the thickness of the shear layer in the cavity increases rapidly and expands into the cavity, leading the impact position on the cavity to move down from the back wall to the bottom, and causing the flow type in the cavity to change from open to closed. The increase of the Mach number inhibits the shear layer from expanding into the cavity and induces the main recirculation vortex to move back and the flow type to be open. The amplitude of the overall sound pressure level is positively correlated with the flow velocity in the back of the cavity.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return