Citation: | GAO J Y, ZHANG J, NI Z S, et al. The aerodynamic characteristics of roof-wing combination of a high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 29-35. DOI: 10.11729/syltlx20220053 |
[1] |
王瑞东, 倪章松, 张军, 等. 高速列车串列升力翼翼型优化设计[J]. 空气动力学学报, 2022, 40(2): 129–137. DOI: 10.7638/kqdlxxb-2021.0203
WANG R D, NI Z S, ZHANG J, et al. Optimization design of tandem airfoils on high-speed train[J]. Acta Aerody-namica Sinica, 2022, 40(2): 129–137. doi: 10.7638/kqdlxxb-2021.0203
|
[2] |
SHELDAHL R E, KLIMAS P C. Aerodynamic characteris-tics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines[R]. SAND-80-2114, 1981. doi: 10.2172/6548367
|
[3] |
McALISTER K W, TAKAHASHI R K. NACA 0015 wing pressure and trailing vortex measurements[R]. NASA-TP-3151, 1991.
|
[4] |
JOSLIN R D, BAKER W J, PATERSON E G, et al. Aerodynamic prediction of a NACA0015-flap control con-figuration[C]//Proc of the 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. doi: 10.2514/6.2002-410
|
[5] |
LEE S J, JEONG E C, LIM H C. Numerical study on aerodynamic characteristics of NACA0015[J]. Applied Mechanics and Materials, 2013, 302: 640–645. doi: 10.4028/www.scientific.net/amm.302.640
|
[6] |
AHMED M R, TAKASAKI T, KOHAMA Y. Aerodynamics of a NACA4412 airfoil in ground effect[J]. AIAA Journal, 2007, 45(1): 37–47. doi: 10.2514/1.23872
|
[7] |
SINGH N. Analysis of aerodynamic characteristics of various airfoils at sonic speed[J]. International Journal of Engineering Research & Technical, 2016, 5(9): 405–411. doi: 10.17577/ijertv5is090321
|
[8] |
GERAKOPULOS R, BOUTILIER M S H, YARUSEVYCH S. Aerodynamic characterization of a NACA 0018 airfoil at low Reynolds numbers[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010: 4629. doi: 10.2514/6.2010-4629
|
[9] |
GAO D G, NI F, LIN G B, et al. Aerodynamic analysis of pressure wave of high-speed maglev vehicle crossing: model-ing and calculation[J]. Energies, 2019, 12(19): 3770. doi: 10.3390/en12193770
|
[10] |
毕海权, 雷波, 张卫华. TR型磁浮列车气动力特性数值计算研究[J]. 铁道学报, 2004, 26(4): 51–54. DOI: 10.1007/BF02911033
BI H Q, LEI B, ZHANG W H. Research on numerical calculation for aerodynamic characteristics of the TR maglev train[J]. Journal of the China Railway Society, 2004, 26(4): 51–54. doi: 10.1007/BF02911033
|
[11] |
庄礼贤, 尹协远, 马晖扬, 等. 流体力学(第2版)[M]. 合肥: 中国科学技术大学出版社, 2009.
|
[12] |
VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics[M]. 北京: 世界图书出版公司北京公司, 2000.
|
[13] |
YAO S B, SUN Z X, GUO D L, et al. Numerical study on wake characteristics of high-speed trains[J]. Acta Mechanica Sinica, 2013, 29(6): 811–822. doi: 10.1007/s10409-013-0077-3
|
[14] |
姚曙光, 许平. 国产磁浮列车外形气动性能分析[J]. 铁道机车车辆, 2007, 27(3): 33–34,69. DOI: 10.3969/j.issn.1008-7842.2007.03.012
YAO S G, XU P. Aerodynamic shape optimization of domestic maglev train[J]. Railway Locomotive & Car, 2007, 27(3): 33–34,69. doi: 10.3969/j.issn.1008-7842.2007.03.012
|
[15] |
McGHEE R J, BEASLEY W. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications[R]. NASA-TN-D-7428, 1973.
|
[1] | SONG Huazhen, ZHAO Huanyu, ZHU Chengxiang, WANG Zhengzhi, TIAN Wei, LI Haixing, ZHU Chunling. Three-dimensional liquid film flow measurement based on digital image projection technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 106-114. DOI: 10.11729/syltlx20200031 |
[2] | ZHANG Lei, ZHANG Ruoling, XIAO Shide, LIU Yu, XIONG Ying. Experimental investigation on high temperature deformation of regeneratively cooled combustor structure based on non-contact measurement[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 53-59. DOI: 10.11729/syltlx20200051 |
[3] | Wang Hongwei, Huang Zhan. Research on particle image velocimetry based on optical flow[J]. Journal of Experiments in Fluid Mechanics, 2015, (3): 68-75. DOI: 10.11729/syltlx20140115 |
[4] | Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053 |
[5] | GU Yi, CEN Fei, WEN Yu-chang, LIU Zhi-tao, CHE Bing-hui. Research about continuous scanning test technique based on non-contact measurement technique in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 98-104. DOI: 10.3969/j.issn.1672-9897.2013.05.019 |
[6] | XU Ming, WANG Hao-li. Measurement of velocity by micro-PIV technique based on overlap of low density particle images[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 106-112. DOI: 10.3969/j.issn.1672-9897.2013.02.021 |
[7] | WANG Yuan, YANG Bin, WANG Da-wei. Advances in wind-blown sand flow optical measurement and image processing techniques[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 55-64. DOI: 10.3969/j.issn.1672-9897.2010.01.011 |
[8] | ZHU Ru-song, KANG Hu. The real-time model angle of attack measurement based on image and it's application in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 63-68,72. DOI: 10.3969/j.issn.1672-9897.2006.04.012 |
[9] | Method of measuring cavity's shapes at axially symmetrical bodies[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 67-70. DOI: 10.3969/j.issn.1672-9897.2004.01.015 |
[10] | XI Hua, ZHANG Xi-wen, HE Feng, XU Yang, XU Hong-qing. The investigation of particle removal efficiency beneath an impinging jet with image processing[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(2): 40-43. DOI: 10.3969/j.issn.1672-9897.2000.02.007 |
1. |
张璇,沈雪,田于逵,孙海浪,谢华,张楠. 平板边界层参数水槽测量与仿真分析研究. 实验流体力学. 2017(01): 26-31+46 .
![]() | |
2. |
严宇超,姜澄宇,马炳和,薛晓晗,罗剑. 壁面剪应力标定方法研究综述. 实验流体力学. 2017(02): 20-25 .
![]() | |
3. |
孙海浪,田于逵,金磊,张璇,谢华. MEMS热膜式壁面剪应力传感器微弱信号检测. 实验流体力学. 2017(02): 39-43 .
![]() | |
4. |
田于逵,张璇,沈雪,孙海浪,谢华,张楠. 水下平板壁面剪应力MEMS测量研究进展. 实验流体力学. 2017(03): 82-87 .
![]() |