Volume 37 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
YANG W Z, LIU F, WEI M J, et al. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096
Citation: YANG W Z, LIU F, WEI M J, et al. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43 doi: 10.11729/syltlx20220096

Experimental investigation on tunnel pressure wave of high-speed train

doi: 10.11729/syltlx20220096
  • Received Date: 2022-09-16
  • Accepted Date: 2022-12-05
  • Rev Recd Date: 2022-12-01
  • Available Online: 2023-03-10
  • Publish Date: 2023-02-25
  • When a high-speed train enters a tunnel, an initial compression wave occurs and radiates to the outside of the tunnel to form a micro pressure wave when it propagates longitudinally along the tunnel to the exit. An experimental device for generating the initial compression wave by the instantaneous release of high-pressure air was built, and the experimental research on the compression wave generated by it was carried out. Firstly, the composition of the experimental device was introduced, and the pressure time history curve and formation mechanism in the tunnel were analyzed. Secondly, the influence of the parameters of the experimental device on the initial compression wave was drawn out. The subsequent attenuation process of the compression wave was studied at last. The experimental results show that the pressure fluctuation in the tunnel is mainly affected by the reflected wave at the tunnel portal. The amplitude, gradient and positive peak value of the initial compression wave can be adjusted by changing the relevant parameters of the experimental device. The attenuation period of the compression wave is the same under different initial pressures of the high-pressure chamber, but the larger the initial amplitude is, the faster the pressure decays in the same time period.
  • loading
  • [1]
    TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308–325. doi: 10.3973/j.issn.2096-4498.2021.02.018
    [2]
    杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002

    YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002
    [3]
    RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 469–514. doi: 10.1016/S0376-0421(02)00029-5
    [4]
    梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
    [5]
    LIU F, YAO S, ZHANG J, et al. Field measurements of aerodynamic pressures in high-speed railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 72: 97–106. doi: 10.1016/j.tust.2017.11.018
    [6]
    ADAMI S, KALTENBACH H J. Sensitivity of the wave-steepening in railway tunnels with respect to the friction model[C]//Proceedings of the 6th International Colloquium on: Bluff Body Aerodynamics and Applications, Milano. 2008.
    [7]
    王宏林, 雷波, 毕海权. 压缩波惯性作用对其波形演变的影响[J]. 西南交通大学学报, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017

    WANG H L, LEI B, BI H Q. Influence of inertial effect of compression wave on waveform evolution[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017
    [8]
    LIU F, VARDY A E, POKRAJAC D. Influence of air Chambers on wavefront steepening in railway tunnels[J]. Tunnelling and Underground Space Technology, 2021, 117: 104120. doi: 10.1016/j.tust.2021.104120
    [9]
    FUKUDA T, NAKAMURA S, MIYACHI T, et al. Influence of ballast quantity on compression wavefront steepening in railway tunnels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(6): 607–615. doi: 10.1177/0954409719852263
    [10]
    IYER R S, KIM D H, KIM H D. Propagation characteristics of compression wave in a high-speed railway tunnel[J]. Physics of Fluids, 2021, 33(8): 086104. doi: 10.1063/5.0054868
    [11]
    梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
    [12]
    王英学, 高波, 郑长青, 等. 高速列车进入隧道产生的微气压波实验研究[J]. 实验流体力学, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002

    WANG Y X, GAO B, ZHENG C Q, et al. Micro-compression wave model experiment on the high-speed train entering tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002
    [13]
    郭易, 郭迪龙, 杨国伟, 等. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226

    GUO Y, GUO D L, YANG G W, et al. Moving model analysis of the slipstream of a long grouping high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226
    [14]
    WANG J, WANG T, YANG M, et al. Effect of localized high temperature on the aerodynamic performance of a high-speed train passing through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104444. doi: 10.1016/j.jweia.2020.104444
    [15]
    DU J, ZHANG L, YANG M, et al. Moving model experiments on transient pressure induced by a high-speed train passing through noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104267. doi: 10.1016/j.jweia.2020.104267
    [16]
    LI X Z, WANG M, XIAO J, et al. Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: a moving model test[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 26–38. doi: 10.1016/j.jweia.2018.05.012
    [17]
    MATSUO K. Attenuation of compression waves in a high-speed railway tunnel simulator[C]//Proc. of 7th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels. 1991.
    [18]
    MIYACHI T, ARAI T, SAKAUE S, et al. Development of tunnel compression wave generator with multiple small solenoid valves[J]. Mechanical Engineering Journal, 2019, 6(2): 18–478. doi: 10.1299/mej.18-00478
    [19]
    朱仁庆, 杨松林, 杨大明. 实验流体力学[M]. 北京: 国防工业出版社, 2005.
    [20]
    MIYACHI T, FUKUDA T, SAITO S. Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch[J]. Journal of Sound and Vibration, 2014, 333(23): 6156–6169. doi: 10.1016/j.jsv.2014.06.037
    [21]
    BELLENOUE M, AUVITY B, KAGEYAMA T. Blind hood effects on the compression wave generated by a train entering a tunnel[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 397–407. doi: 10.1016/S0894-1777(01)00088-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (3248) PDF downloads(49) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return