Citation: | YANG W Z, LIU F, WEI M J, et al. Experimental investigation on tunnel pressure wave of high-speed train[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 36-43. DOI: 10.11729/syltlx20220096 |
[1] |
TIAN S M, WANG W, GONG J F. Development and prospect of railway tunnels in China(including statistics of railway tunnels in China by the end of 2020)[J]. Tunnel Construction, 2021, 41(2): 308–325. doi: 10.3973/j.issn.2096-4498.2021.02.018
|
[2] |
杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(0): 217–460. DOI: 10.6052/1000-0992-14-002
YANG G W, WEI Y J, ZHAO G L, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(0): 217–460. doi: 10.6052/1000-0992-14-002
|
[3] |
RAGHUNATHAN R S, KIM H D, SETOGUCHI T. Aerodynamics of high-speed railway train[J]. Progress in Aerospace Sciences, 2002, 38(6-7): 469–514. doi: 10.1016/S0376-0421(02)00029-5
|
[4] |
梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.
|
[5] |
LIU F, YAO S, ZHANG J, et al. Field measurements of aerodynamic pressures in high-speed railway tunnels[J]. Tunnelling and Underground Space Technology, 2018, 72: 97–106. doi: 10.1016/j.tust.2017.11.018
|
[6] |
ADAMI S, KALTENBACH H J. Sensitivity of the wave-steepening in railway tunnels with respect to the friction model[C]//Proceedings of the 6th International Colloquium on: Bluff Body Aerodynamics and Applications, Milano. 2008.
|
[7] |
王宏林, 雷波, 毕海权. 压缩波惯性作用对其波形演变的影响[J]. 西南交通大学学报, 2015, 50(1): 118–123. DOI: 10.3969/j.issn.0258-2724.2015.01.017
WANG H L, LEI B, BI H Q. Influence of inertial effect of compression wave on waveform evolution[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 118–123. doi: 10.3969/j.issn.0258-2724.2015.01.017
|
[8] |
LIU F, VARDY A E, POKRAJAC D. Influence of air Chambers on wavefront steepening in railway tunnels[J]. Tunnelling and Underground Space Technology, 2021, 117: 104120. doi: 10.1016/j.tust.2021.104120
|
[9] |
FUKUDA T, NAKAMURA S, MIYACHI T, et al. Influence of ballast quantity on compression wavefront steepening in railway tunnels[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(6): 607–615. doi: 10.1177/0954409719852263
|
[10] |
IYER R S, KIM D H, KIM H D. Propagation characteristics of compression wave in a high-speed railway tunnel[J]. Physics of Fluids, 2021, 33(8): 086104. doi: 10.1063/5.0054868
|
[11] |
梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. DOI: 10.19818/j.cnki.1671-1637.2020.01.009
MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
|
[12] |
王英学, 高波, 郑长青, 等. 高速列车进入隧道产生的微气压波实验研究[J]. 实验流体力学, 2006, 20(1): 5–8. DOI: 10.3969/j.issn.1672-9897.2006.01.002
WANG Y X, GAO B, ZHENG C Q, et al. Micro-compression wave model experiment on the high-speed train entering tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 5–8. doi: 10.3969/j.issn.1672-9897.2006.01.002
|
[13] |
郭易, 郭迪龙, 杨国伟, 等. 长编组高速列车的列车风动模型实验研究[J]. 力学学报, 2021, 53(1): 105–114. DOI: 10.6052/0459-1879-20-226
GUO Y, GUO D L, YANG G W, et al. Moving model analysis of the slipstream of a long grouping high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 105–114. doi: 10.6052/0459-1879-20-226
|
[14] |
WANG J, WANG T, YANG M, et al. Effect of localized high temperature on the aerodynamic performance of a high-speed train passing through a tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 208: 104444. doi: 10.1016/j.jweia.2020.104444
|
[15] |
DU J, ZHANG L, YANG M, et al. Moving model experiments on transient pressure induced by a high-speed train passing through noise barrier[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 204: 104267. doi: 10.1016/j.jweia.2020.104267
|
[16] |
LI X Z, WANG M, XIAO J, et al. Experimental study on aerodynamic characteristics of high-speed train on a truss bridge: a moving model test[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 179: 26–38. doi: 10.1016/j.jweia.2018.05.012
|
[17] |
MATSUO K. Attenuation of compression waves in a high-speed railway tunnel simulator[C]//Proc. of 7th Int. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels. 1991.
|
[18] |
MIYACHI T, ARAI T, SAKAUE S, et al. Development of tunnel compression wave generator with multiple small solenoid valves[J]. Mechanical Engineering Journal, 2019, 6(2): 18–478. doi: 10.1299/mej.18-00478
|
[19] |
朱仁庆, 杨松林, 杨大明. 实验流体力学[M]. 北京: 国防工业出版社, 2005.
|
[20] |
MIYACHI T, FUKUDA T, SAITO S. Model experiment and analysis of pressure waves emitted from portals of a tunnel with a branch[J]. Journal of Sound and Vibration, 2014, 333(23): 6156–6169. doi: 10.1016/j.jsv.2014.06.037
|
[21] |
BELLENOUE M, AUVITY B, KAGEYAMA T. Blind hood effects on the compression wave generated by a train entering a tunnel[J]. Experimental Thermal and Fluid Science, 2001, 25(6): 397–407. doi: 10.1016/S0894-1777(01)00088-7
|
[1] | SONG Junhao, YAO Shuanbao, CHEN Dawei, DING Sansan, YANG Mingzhi. Mitigation of micro-pressure wave at high-speed maglev tunnel exit by resonant cavity structure[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 1-8. DOI: 10.11729/syltlx20220114 |
[2] | ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170 |
[3] | MA Zhihao, JING Xuelei, DU Yingchun, MEI Yuangui. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112. DOI: 10.11729/syltlx20220123 |
[4] | CHENG Jionghao, GUO Yi, GUO Dilong, JI Zhanling, MAO Jun, LIU Wen. Slipstream at the tunnel exit induced by a high-speed maglev train passing through a tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 53-63. DOI: 10.11729/syltlx20220110 |
[5] | DU Yingchun, MEI Yuangui. Study on the critical tunnel length distribution characteristics of high-speed maglev railway single-track tunnel based on pressure comfort[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 44-52. DOI: 10.11729/syltlx20220120 |
[6] | FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129 |
[7] | Song Junhao, Guo Dilong, Yang Guowei, Yang Qiansuo. Experimental investigation on the aerodynamics of tunnel-passing for high speed train with a moving model rig[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 39-45. DOI: 10.11729/syltlx20170002 |
[8] | Zhou Jian, Ou Ping, Liu Peiqing, Guo Hao. Numerical study of ground effects on high speed train aerodynamic drag[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 26-31. DOI: 10.11729/syltlx20150124 |
[9] | WANG Ying-xue, GAO Bo, ZHENG Chang-qing, ZHAO Wen-cheng. Micro-compression wave model experiment on the high-speed train entering tunnel[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(1): 5-8. DOI: 10.3969/j.issn.1672-9897.2006.01.002 |
[10] | Aerodynamics character model experiment analysis of high-speed train going through tunnel[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(3): 73-78. DOI: 10.3969/j.issn.1672-9897.2004.03.016 |