Citation: | ZHANG Z F, XIAO X B, HAN J, et al. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90. DOI: 10.11729/syltlx20230065 |
[1] |
THOMPSON D. Railway noise and vibration: mechanisms, modeling and means of control[M]. Oxford: Elsevier, 2009. doi: 10.1016/B978-0-08-045147-3.X0023-0
|
[2] |
丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35–50. DOI: 10.6052/0459-1879-20-225
DING S S, CHEN D W, LIU J L. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35–50. doi: 10.6052/0459-1879-20-225
|
[3] |
袁贤浦, 苗晓丹, 袁天辰, 等. 高速列车受电弓气动噪声分析与弓头降噪研究[J]. 铁道学报, 2021, 43(12): 38–48. DOI: 10.3969/j.issn.1001-8360.2021.12.00
YUAN X P, MIAO X D, YUAN T C, et al. Aerodynamic noise analysis of high-speed train pantograph and study on noise reduction of pantograph head[J]. Journal of the China Railway Society, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.00
|
[4] |
KURITA T, WAKABAYASHI Y, YAMADA H, et al. Reduction of wayside noise from Shinkansen high-speed trains[J]. Journal of Mechanical Systems for Transportation and Logistics, 2011, 4(1): 1–12. doi: 10.1299/jmtl.4.1
|
[5] |
ZHU C L, HEMIDA H, FLYNN D, et al. Numerical simulation of the slipstream and aeroacoustic field around a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 740–756. doi: 10.1177/0954409716641150
|
[6] |
SASSA T, SATO T, YATSUI S. Numerical analysis of aerodynamic noise radiation from a high-speed train surface[J]. Journal of Sound and Vibration, 2001, 247(3): 407–416. doi: 10.1006/jsvi.2001.3773
|
[7] |
LIANG X F, LIU H F, DONG T Y, et al. Aerodynamic noise characteristics of high-speed train foremost bogie section[J]. Journal of Central South University, 2020, 27(6): 1802–1813. doi: 10.1007/s11771-020-4409-8
|
[8] |
史佳伟, 王浩, 圣小珍. 400 km/h速度下转向架气动噪声特性研究[J]. 噪声与振动控制, 2020, 40(3): 125–130. DOI: 10.3969/j.issn.1006-1355.2020.03.022
SHI J W, WANG H, SHENG X Z. Study on aerodynamic noise characteristics of bogies at 400 km/h speed[J]. Noise and Vibration Control, 2020, 40(3): 125–130. doi: 10.3969/j.issn.1006-1355.2020.03.022
|
[9] |
SAWAMURA Y, UDA T, KITAGAWA T. Wind tunnel study on measurement and reduction of aerodynamic noise generated from the bogie section of high-speed trains[J]. The Proceedings of the Symposium on Environmental Engineer-ing, 2018, 2018(28): 109. doi: 10.1299/jsmeenv.2018.28.109
|
[10] |
KITAGAWA T, NAGAKURA K. Aerodynamic noise generated by shinkansen cars[J]. Journal of Sound and Vibration, 2000, 231(3): 913–924. doi: 10.1006/jsvi.1999.2639
|
[11] |
NOH H M, CHOI S, HONG S, et al. Investigation of noise sources in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2014, 228(3): 307–322. doi: 10.1177/0954409712473095
|
[12] |
FRÉMION N, VINCENT N, JACOB M, et al. Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train[J]. Journal of Sound and Vibration, 2000, 231(3): 577–593. doi: 10.1006/jsvi.1999.2546
|
[13] |
KITAGAWA T, NAGAKURA K, KURITA T. The noise generated from the lower part of shinkansen cars running at high-speed[J]. Journal of Environment and Engineering, 2012, 7(1): 66–75. doi: 10.1299/jee.7.66
|
[14] |
SEVER A C, ROCKWELL D. Oscillations of shear flow along a slotted plate: small- and large-scale structures[J]. Journal of Fluid Mechanics, 2005, 530: 213–222. doi: 10.1017/s0022112005003721
|
[15] |
CELIK E, SEVER A C, KIWATA T, et al. Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp[J]. Experiments in Fluids, 2007, 42(4): 639–651. doi: 10.1007/s00348-007-0272-8
|
[16] |
ZHANG Y C, XU Y G, CHEN X D, et al. Excitation condition for self-sustained oscillation in flow past a louvered cavity[J]. Journal of Mechanics, 2017, 33(4): 535–544. doi: 10.1017/jmech.2017.43
|
[17] |
谭玉婷, 伍贻兆, 田书玲. 基于DES的二维和三维空腔流动特性研究[J]. 航空计算技术, 2010, 40(1): 67–70. DOI: 10.3969/j.issn.1671-654X.2010.01.017
TAN Y T, WU Y Z, TIAN S L. Numerical simulation of 2D/3D cavity flows using DES[J]. Aeronautical Computing Technique, 2010, 40(1): 67–70. doi: 10.3969/j.issn.1671-654X.2010.01.017
|
[18] |
SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-439
|
[19] |
YANG D G, LI J Q, FAN Z L, et al. Aerodynamic characteristics of transonic and supersonic flow over rectangular cavities[J]. Flow, Turbulence and Combustion, 2010, 84(4): 639–652. doi: 10.1007/s10494-010-9246-7
|
[20] |
LIU Y, TONG M B. Aeroacoustic investigation of a cavity with and without doors by delayed detached eddy simulation[J]. International Journal of Aeronautical and Space Sciences, 2015, 16(1): 19–27. doi: 10.5139/ijass.2015.16.1.19
|
[21] |
邓锷, 杨伟超, 尹荣申, 等. 横风下高速列车驶入隧道时瞬态气动性能研究[J]. 湖南大学学报(自然科学版), 2019, 46(9): 69–78. DOI: 10.16339/j.cnki.hdxbzkb.2019.09.008
DENG E, YANG W C, YIN R S, et al. Study on transient aerodynamic performance of high-speed trains when entering into tunnel under crosswinds[J]. Journal of Hunan University (Natural Sciences), 2019, 46(9): 69–78. doi: 10.16339/j.cnki.hdxbzkb.2019.09.008
|
[22] |
瓮哲, 王霄, 刘超, 等. 内埋武器舱动态流动特性及降噪控制方法研究[J]. 空气动力学学报, 2022, 40(3): 169–174. DOI: 10.7638/kqdlxxb-2022.0030
WENG Z, WANG X, LIU C, et al. Unsteady flow characteristics and noise reduction control methods of a geometrically complex weapons bay[J]. Acta Aerodynamica Sinica, 2022, 40(3): 169–174. doi: 10.7638/kqdlxxb-2022.0030
|
[23] |
ZHU J Y, HU Z W, THOMPSON D J. Flow simulation and aerodynamic noise prediction for a high-speed train wheelset[J]. International Journal of Aeroacoustics, 2014, 13(7-8): 533–552. doi: 10.1260/1475-472x.13.7-8.533
|
[24] |
KAUFMAN L G, MACIULAITIS A, CLARK R L. Mach 0.6 to 3.0 Flow over Rectangular Cavities[R]. Air Force Wright Aeronautical Labs, AFWAL-TR-82-3112, 1983.
|
[25] |
杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.
YANG D G. Study on aeroacoustic characteristics and noise suppression of embedded weapon cabin[D]. Mianyang: China Aerodynamics Research and Development Center, 2010.
|
[26] |
PLENTOVICH E B, STALLINGS R L, Jr, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds: static-pressure results[R]. NASA Technical Paper 3358, 1993.
|
[27] |
KIM H G, HU Z W, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
|
[28] |
宋晓, BREARD C, 孙一峰. 开孔结构流致噪声的数值模拟和机理分析[J]. 应用声学, 2022, 41(3): 335–343. DOI: 10.11684/j.issn.1000-310X.2022.03.002
SONG X, BREARD C, SUN Y F. Numerical simulation and mechanism analysis of flow-induced noise in open-hole structure[J]. Journal of Applied Acoustics, 2022, 41(3): 335–343. doi: 10.11684/j.issn.1000-310X.2022.03.002
|
[29] |
ZHANG Y C, XU Y G, ZHANG L L. Aerodynamic characteristic analysis of flow structure around the high-speed train equipment bay[J]. Key Engineering Materials, 2016, 693: 11–16. doi: 10.4028/www.scientific.net/kem.693.11
|
[30] |
邓玉清, 张楠. 孔腔脉动压力及其波数—频率谱的大涡模拟研究[J]. 船舶力学, 2017, 21(10): 1199–1209. DOI: 10.3969/j.issn.1007-7294.2017.10.003
DENG Y Q, ZHANG N. Computation of wall pressure fluctuations and wavenumber-frequency spectrum of cavity using large eddy simulation[J]. Journal of Ship Mechanics, 2017, 21(10): 1199–1209. doi: 10.3969/j.issn.1007-7294.2017.10.003
|
[31] |
ABRAHAM B M, KEITH W L. Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra[J]. Journal of Fluids Engineering, 1998, 120(1): 29–39. doi: 10.1115/1.2819657
|
[32] |
CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
|
[33] |
FARABEE T M, CASARELLA M J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10): 2410–2420. doi: 10.1063/1.858179
|
[1] | HE Chao, SUN Peng, LIN Jingzhou, XU Xiaobin, CHEN Lei. Design and application of the dynamic stage separation device in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 90-95. DOI: 10.11729/syltlx20200119 |
[2] | Wang Xiaopeng, Zhang Chen'an, Liu Chunfeng, Wang Famin, Ye Zhengyin. Support interference and correction of cold-flow force test for air-breathing hypersonic vehicle in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 27-33. DOI: 10.11729/syltlx20180116 |
[3] | Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080 |
[4] | Xu Xiaobin, Shu Haifeng, Xie Fei, Wang Xiong, Guo Leitao. Research progress on aerodynamic test technology of hypersonic wind tunnel for air-breathing aerocraft[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 29-40. DOI: 10.11729/syltlx20180053 |
[5] | Deng Fan, Ye Youda, Jiao Zihan, Liu Hui. Research on HIFiRE project's hypersonic vehicle integrated design of aerodynamic and scramjet propulsion[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 73-80. DOI: 10.11729/syltlx20160125 |
[6] | JIANG Wei, YANG Yun-jun, CHEN He-wu. Investigations on aerodynamics of the spike-tipped hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(6): 28-32,53. DOI: 10.3969/j.issn.1672-9897.2011.06.006 |
[7] | HE Kai-feng, WANG Qing, QIAN Wei-qi, HE Zheng-chun. Review of aerodynamic and aero-thermodynamic parameter estimation research for hypersonic aircraft[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 99-104. DOI: 10.3969/j.issn.1672-9897.2011.05.020 |
[8] | KHARITONOV A M, ZVEGINTSEV V I, CHIRKASHENKO V F, BRODETSKY M D, MAZHUL I I, VASENEV L G, MUYLAERT J M, KORDULLA W, PAULAT J C. Aerodynamic investigation of aerospace vehicles in the new hypersonic wind tunnel AT-303 at ITAM[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 10-19. DOI: 10.3969/j.issn.1672-9897.2006.04.002 |
[9] | Heat flux measurement test of the hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(1): 29-32,37. DOI: 10.3969/j.issn.1672-9897.2004.01.007 |
[10] | The calculations of aerodynamic heating and viscous friction forces on the surface of hypersonic flight vehicle[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(1): 8-20. DOI: 10.3969/j.issn.1672-9897.2002.01.002 |
1. |
管新蕾,孙小姣,王维,王利军. 弧形涡流发生器对湍流相干结构及强化换热的影响. 实验流体力学. 2024(04): 104-112 .
![]() | |
2. |
朱寅鑫,彭文强,罗振兵,康赢,赵志杰,程盼,刘杰夫. 全叶高合成双射流对大折转角扩压叶栅的影响. 航空学报. 2023(12): 84-95 .
![]() | |
3. |
蔡明,高丽敏,刘哲,黎浩学,陈顺. 亚声速压气机平面叶栅及其改型的吹风试验. 实验流体力学. 2021(02): 36-42 .
![]() |